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The main aim of my talk is to discuss the spectrum of the one-dimensional
Schrédinger operator L(Q) generated in the space LY (—o0, 00) of the
vector functions by the differential expression

—y' +Qy, (1)

where Q@ = (g; ) is @ m x m matrix with the PT-symmetric 7r-periodic
locally square integrable entries g; ;. In other words,

9ij (=x) = qij (x), qij (x+71) =qi;(x), gij € L[0,7]. (2)

It is well-known that [Rofe-Beketov (1963), McGarvey (1965)] the
spectrum o(L(Q)) of the operator L(Q) is the union of the spectra
o(L:(Q)) of the operators L;(Q) for t € (—1, 1] generated in L0, 7z] by
the differential expression (1) and the quasiperiodic conditions

y (m) =™y (0), y () =€y (0). (3)
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The spectrum of L;(Q) consists of the eigenvalues A;(t), Aa(t), ... that
are the roots of the characteristic determinant

AL, ) = det(Y" D (m,A) — YTV (0,0))2,, = (4)

ei2mmt + fl(/\)ei(2m—l)nt + fz(A)ei(2m—2)nt 4+ fzm_l(/\)eint 41,

where Yi(x,A) and Y2(x, A) are the solutions of the matrix equation
“Y (0 +Q(x) Y(x) =AY (x) (5)

satisfying Y1(0,A) = Op, Y;(0,A) = I, and Y2(0,A) = I,

YQI (0,A) = Op,. Here O, and I, are m X m zero and identity matrices
respectively. The set {A,(t) : t € (—1,1]}, in the self-adjoint case, is the
nth band of the spectrum, while in the non-self-adjoint case is the curve in
the complex plane. Thus the spectrum of L(Q) consists of the curves.
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In the first papers [Bender et al (1999)] about the PT-symmetric periodic
potential, the disappearance of real energy bands for some complex-valued
PT-symmetric periodic potentials have been reported. Shin (2004) showed
that the disappearance of such real energy bands implies the existence of
nonreal band spectra. He involved some condition on the Hill discriminant
to show the existence of nonreal curves in the spectrum.

| proved that the main part of the spectrum of L(q) is real and contains
the large part of [0, c0). However, in general, the spectrum contains also
infinitely many nonreal acts. In my papers, the necessary and sufficient
condition on the potential for finiteness of the number of the nonreal arcs
is determined. Moreover, | find necessary and sufficient conditions for the
equality of the spectrum of L(q) to the half line [c, o0). Besides, | find the
explicit conditions on PT-symmetric periodic complex-valued potential g
for which the number of the gaps in Re (¢(L(q))) is finite (see Monograph
Veliev 2021).
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The steps of my talks are the followings:

1. On the general properties of the spectrum of L(Q) with
PT-symmetric matrix potential Q.

2. On the asymptotic formulas for the eigenvalues of L;(Q).

3. On the condition from which it follows that the real component
c(L(Q)) NR of the spectrum ¢(L(Q)) is contained in a finite
interval [a,b]. Sufficient conditions under which ¢(L(Q)) NR
contains most of [0, c).

4. On the conditions on the potential, for which the spectrum of
L(Q) contains all half line [H, co) for some H and hence the number
of gaps in 0(L(Q)) NR is finite.

5. Comparison the PT-symmetric and self-adjoint cases.
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First we note that if A is an eigenvalue of multiplicity p of the operator
L:(@), then A is also an eigenvalue of the same multiplicity of L;(Q).
This is the characteristic property of the Schrédinger operator with
PT-symmetric potential. Then we consider the operator L;(O,,) for an
unperturbed operator and the operator of multiplication by Q for a
perturbation and prove that there exists a constant ¢ such that the
eigenvalues A(t) of the operator L;(Q) lie on the ¢ neighborhoods of the
eigenvalues of L;(Op,). Note that the eigenvalues of the operator L;(Op)
are (2k + t)2 for k € Z. If t # 0,1, then the multiplicity of the eigenvalue
(2k + t)? is m. In the cases t = 0 and t = 1 the multiplicity of the
nonzero eigenvalues (2k)? and (2k 4+ 1)% is 2m. Thus the multiplicity of
the Bloch eigenvalues of L(O,,) is changed at n? for n > 0, that is, they
are exceptional point of the spectrum in case Q = O,,.
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To obtain a sharp asymptotic formulas we consider the operator L;(Q) as
perturbation of L¢(A), where

A= /(Oﬂ) Q (x) dx, (6)

by Q@ — A, that is, we take the operator Lt(A) for an unperturbed
operator and the operator of multiplication by @ — A for a perturbation.
Therefore first let us discuss the eigenvalues and eigenfunctions of L;(A).
Using (2) and the substitution t = —x one can get the equality

/Oﬂqi,j(X)dXZ/onqi.j(—x)dx:—/O_nq,-,j(t) dt:/oﬂqi’j(t)dt

which means that .
/ qij (X) dx € R
0

for all / and j. Hence the entries of the matrix A are the real numbers.
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Therefore, the eigenvalues of the matrix A consist of the real eigenvalues
and the pairs of the conjugate complex numbers. The distinct eigenvalues
of A are denoted by iy, iy, ..., i, Let uj1, ujo, ...ujg; be the linearly
independent eigenvectors corresponding to the eigenvalue .. It is not hard
to see that the eigenvalues and eigenfunctions of L:(A) are

]/tkyj(t) - (2k+ t)2 +‘HJ, ch,j,s = ijsei(2k+t)x, (7)

It readily implies that the spectrum of L(A) consists of the half lines

{m+a:acloo)f (8)

for j =1,2,..., p. We find a sharp and uniform, with respect to the
quasimomenta t € (—1, 1], asymptotic formula for the Bloch eigenvalues
of L(Q) in term of the eigenvalues of the matrix A for any matrix
potential @ with locally square integrable entries.
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The eigenvalues of L;(Q) are contained in ¢, neighborhood D (yk'j, sk>

of the eigenvalues yk'j(t) of Li(A) forj =1,2,...,m, where g, — 0 as
k — oo.

Using this result we classify the spectrum of L(Q). This theorem implies
that the spectrum of L(Q) is asymptotically close to the spectrum of the
operator L(A). On the other hand, the spectrum of L(A) are the half lines
(8). Therefore, if the matrix A has no real eigenvalues then the spectrum
of the operator L(Q) with general potential Q approaches the nonreal
half lines (8). Thus we have

If the matrix A has no real eigenvalues, then the real component of the
spectrum of L(Q) is contained in a finite interval [a, b).
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Now let us discuss the cases when the matrix A has the real eigenvalues
and investigate the real component of the spectrum of L(Q).

Suppose that the matrix A has a real eigenvalue p ; of odd multiplicity.
Then the spectrum of L(Q) contains the main part of [0, 00) in the sense

that

(0. A\(L(Q))
A @) N, O )

Now suppose that m is an odd number. If the multiplicities of

My Moo ooy f, Ar€ My, my, ..., Mp, then my +my+ ...+ mp, = m. The
nonreal eigenvalues are the pairs of the conjugate complex numbers with
the same multiplicity. Therefore, the total multiplicity of the nonreal
eigenvalues is an even number. Then the total multiplicity of the real
eigenvalues is an odd number. Hence the matrix A has a real eigenvalue y;
of odd multiplicity and we have the following consecuenrce of tha thecram.
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If m is an odd number, then the real component of the spectrum of L(Q)
contains the main part of [0, 00) and (9) holds.

Finally, we find a condition on the eigenvalues of the matrix A for which
the the real component of the spectrum of L(Q) contains a half line
[H, o0) for some H.

Theorem

If the matrix A has at least three real eigenvalues y; , i; and p of odd
multiplicities such that

min (d"am({]‘jl My Wy, TRy M T .14/3})) =d#0, (10)

i1,02,13

where ik = 1,2,...,s for k =1,2,3 and diam(E) = SUPy ycE | x—y|,
then there exists a number H such that [H, o) € o(L(Q)).
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In the self-adjoint vectorial case we only suppose that there exists a triple
(J1,J2. j3) such that (10) holds. Note that in the scalar case m =1 the
finite zone potentials are infinitely differentiable functions and have a
special form expressed by Riemann 8 function, while in the vectorial case
we guarantee finite number of gaps under simple algebraic condition on
the eigenvalue of the matrix A. Let us explain why we need three different
eigenvalues satisfying (10), in order to prove that the number of the gaps
in the spectrum of L(Q) is finite. If the matrix A has only one eigenvalue
 with multiplicity m, then it is possible that the spectrum of L(Q) has
infinitely many gaps. For example, if Q@ = g/, where g is not a finite zone
scalar potential, then the spectrum of L(Q) has infinitely many gaps. The
multiplicity of y, ;(t) is changed, that is, y1, ;(t) is an exceptional point of
the spectrum of L(A) if (2mk + t)° + u; = (2mn+ t)? + u; for some

(n, i) # (k,j). If the matrix C has only two eigenvalues p; and p,, then
the perturbation @ — A may generate a gap at the neighborhood of the
exceptional Bloch eigenvalues (27tk + t)> + pu, = (27tn + t)> + p,
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Now let us discuss why gaps in 0(L(Q)) do not appear in the interval
(H, ) if H is a large number and condition (10) holds. For each
s € {1,2,3} the set

os (L(A)) = {(2nk—|— t)? +u, tk€Z te(-m, n]}

(let us call it js spectrum) cover the interval (H, o). The perturbation

Q — C may generate a gap in 05 (L(C)) onIy at the neighborhood of the
exceptional Bloch eigenvalues (27tk + t) + 1, (let us call it j
exceptional Bloch eigenvalues). On the other hand condition (10) implies
that the j1, jo and j3 exceptional Bloch eigenvalues have no common
points. That is why, for each A € (H, c0) there exists s € {1, 2,3} such
that A does not belong to the neighborhood of js exceptional Bloch
eigenvalues. Hence the perturbation @ — C does not generate a gap in
0j, (L(C)) at the neighborhood of A.
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Now about the multidimensional Schrédinger operator
L(q) = —A+q(x), x€R?, d>2

with a periodic, relative to a lattice (), potential g. Recall that the lattice
Q) is the set of all linear combinations of d linearly independent vectors
w1, Wwsy, ..., wq with the integer coefficients:

d
Q:{w: Enkwk:nlez, mneZ, .., ndGZ}.
k=1
The parallelotope (d-dimensional parallelepiped)
d
F={x=) ywr:yn€[01), y€[0,1), ..., yg €[0,1)
k=1

is called the fundamental parallelotope or the primitive unit cell of the
lattice.
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It is well-known that the spectrum of L(q) is the union of the spectra of
the operators L;:(q) generated in primitive cell of the lattice Q) by
—Au(x)+q(x)u(x) and the Bloch conditions

u(x4w) =’ y(x), Ywen,

for all quasimomenta t lying in the primitive cell (Brillouin zone) F* of the
reciprocal lattice T'. The spectrum of L;(q) consists of the eigenvalues
A1(t) <Ay(t) < ....that are called Bloch eigenvalues of L(q). The n-th
band function A, : t — A,(t) is continuous with respect to t and its
range

{An(t) : teF*}

is n-th band of the spectrum of L(q). The eigenfunctions of L;(q) are
known as the Bloch functions.
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In one-dimensional case it is very easy to explain the arising of the gaps in
the spectrum. There are only two Bloch eigenvalues (—n)? and (n)? of
the free operator lying at the point A = (n)? . Under the perturbation g
one eigenvalue goes to the left and one to the right and the gap in the
neighborhood of (n)? emerges as a result of these movings.

In the big contrary of the one-dimensional case, in the multidimensional
case the set of all Bloch eigenvalues | 7y + t |2 of the unperturbed operator
L(0) lying at the same point p? as much as the points of the sphere

S(p) = {x € R?:| x |= p}, since | 7+ t |>= p? is the Bloch eigenvalue
of L(0) and R? = {y +t:y €T, t € F*}. If the sphere is large, then
after the perturbation g the probability that all these eigenvalues go away
from the point p? and the other Bloch eigenvalues do not come to this
point is very small. However the rigorous mathematical investigation of
the perturbations of all these eigenvalues and to prove that the
isoenergetic surface /(p?, q) =: {t € F*: 3N, Apn(t) = p?} can not
become an empty set are extremely complicated.
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Note that the regular perturbation theory does not work, since the Bloch
eigenvalues of the free operator are situated very close to each other in
high energy region. In general, the perturbation theory is easy if the
potential g is smaller than the distance between the eigenvalues of the
unperturbed operator L;(0). The regular perturbation theory breaks down
when the potential cannot be considered as a small perturbation. This
happens for the large Bloch eigenvalue. For large p in the interval

(0> —1,0% + 1) of length 2 there are, in average, p9~2 Bloch eigenvalues
| v + t |? of the free operator. It means that the distance between
neighboring eigenvalues is of order pQ*d. The eigenvalue

Ay +1t) € (p* —1,p? + 1) of the operator L;(q) is a result of moving of
the Bloch eigenvalues | v + t |? of the free electron under the perturbation
q. After the perturbation g all these eigenvalues move and some of them
move of order 1 and hence each of the resulting eigenvalues A(y + t) of
L:(q) may coincide with p?>. Thus we need to control the moving of all
eigenvalues | v+t |2€ (0> — 1,0% +1).
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In my papers (1983-1985) for the first time the eigenvalues |y + t]z, for
large v € T, were divided into two groups: non-resonance ones and
resonance ones and for the perturbations of each group various asymptotic
formulae were obtained. Then using the perturbation theory we
constructed a part of isoenergetic surfaces /(p?, q) of the Schrodinger
operator L(q) of arbitrary dimension which has the measure asymptotically
close to the measure of the sphere S(p) :

nl(* q)) = u(S(p))(1+ O(p™)), a > 0. (11)

The nonemptiness of the isoenergetic surfaces /(p?, q) for large p, and
hence (11) implies that the there exist only a finite number of gaps in the
spectrum of L which is the Bethe-Sommerfeld conjecture. This conjecture
was formulated in 1933. For the first time M. M. Skriganov (1984) proved
the Bethe-Sommerfeld conjecture under some conditions on the lattice by
investigation of the arithmetic and geometric properties of the lattice. My
method is a first and unique (for the present) by which the validity of the
Bethe-Sommerfeld conjecture for arbitrary lattice and for arbitrary
dimension is proved (1985).
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