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Motivation

Avionic sensing?

(not to worry - this Is not an engineering talk)

Airplane navigation systems employ precise accelerometers.
The accelerometer measures the instantaneous acceleration of the airplane and feeds it to the flight computer.

The computer then integrates the equations of motion to find the instantaneous location of the airplane in space.



Other uses of high-sensitivity accelerometers:

*navigation

»gravity radiometry

earthquake monitoring

- platform stabilization for space applications
*home security (intruder detection)

-airbag deployment in cars

*more ....



Typical accelerometers
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Typically, accelerometers use linear sensors: the output is (ultimately an electronic) signal proportional to the instantaneous acceleration.

the sensor detects the displacement of a test mass

output (electric signal) = C x input (acceleration)

sensitivity = d(output)/d(input) = C

fixed sensitivity C

want to make C as large as possible, which Is naturally limited



Developing detectors that go beyond linear response might lead to marked enhancement of small-acceleration sensing,
without sacrificing the dynamical range of the sensor

dynamical range of the sensor = ratio between the maximal and minimal acceleration measurable by the sensor

a prominent example of such detectors: resonant systems near N-th order exceptional point degeneracy:

a small perturbation ~ € << 1 activates sub-linear response ~ 61/ N > €

In resonance splitting
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our proposal: accelerator with enhanced sensing capability based on sub-linear variations of scattering cross-sections
to small perturbations.

sub-linear response occurs due to Wigner’s cusp anomaly (WCA) of the cross-section at threshold between an open
and closed scattering channel

then use the sub-linear Puiseux expansion for the reflectance/transmittance near threshold for hypersensing



The advantage of our proposal over the exceptional-point based gyros: our WCA protocol Is based on intensity
measurements (transmittance/reflectance) and not on resonant shift. The latter Is sometimes masked by broadening of

the transmission (or reflection) spectrum, and also in the presence of gain elements, by the unavoidable addition of
guantum noise.

We thus propose WCA-based sensors as simple, yet hypersensitive devices for a variety of applications ranging from
avionics to bio- and chemical sensing.



fundamental principle behind WCA  (L&L vol 3)

(I shall explain it for NRQM, but this holds also to many phenomena of wave propagation, in particular, of EM waves)
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In simple terms, the near threshold behavior 0, " Ve

demonstrates the well-known fact that in a scattering process between propagating modes carrying currents

Ji,Jg  the transmittance is 7, ~ L ~ L /e



From L&L v3, single channel threshold
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WCAs In different physical systems

>

The simplest example leading to WCA is one-dimensional scattering
of a nonrelativistic particle by a step potential of height U extending

over x = 0 (see Fig. 1B). For x < 0, the energy dispersion relation is
E = k’ (units of #°/2m = 1) where E and k; are the incident energy
and the wave vector, while for x > 0, we have ks = VE — U. Thresh-
old occurs at energy E; = U, signifying a transition from a real (for
E > E;) to an imaginary (for E < E;) wave vector k¢ (corresponding to
an evanescent wave). Aboye (below) threshold E > U(E < U), the
reflectance is R = (kf_ki) ~ 1 - 4\/m (R = 1), while the cor-

kf+ ki U

responding transmittanceis T = 4( ” kil:)z ~ 4 E{]U (T = 0),which
. . + Ki .
nicely demonstrates the leading square-root term of the systematic

Puiseux expansion of these quantities.




The analogous scenario in optics is associated with light scatter-
ing through a dielectric interface from a medium with high refrac- C
tive index n; = ny to a medium with a low refractive index nf = ny
(see Fig. 1C). Assuming that the direction of the normal from the
boundary plane is along the z axis, the problem is rotation-invariant
around this axis. Consequently, without loss of generality, the direction
of propagation can be taken to lie in the xz plane. The dispersion
relations on each side of the interface are k7 = \/(% nif)* — (k)?,
where k = (k*, k’,k%). Furthermore, k* = £ n;sin 0;, where 0; is the
incidence angle with respect to the normal to the interface and
Snell’s law guarantees continuity of k*. Here, threshold behavior
occurs at the critical angle 8; = 6. = arcsin(;>), corresponding to
ki = 0. The reflection r and transmission t amplitudes are given by
the same expressions as in the quantum step example, with k; and kg
substituted by k{ ;. Just below the critical angle 6 =6. - & (0 <& < 1),
we can expand r, t in a Puiseux series, leading to the polarization-
dependent reflectance (transmittance)

R=|r|* < 1-2A45vE, T = |t]|* o< 2A5~E

1
where Ag = 2y§ \/2 (i*—1) *,i = ny/ny is a refractive index ratio
between the two media, 6 = p, s denotes the s- and p-polarized light,
respectively, and ys—; = 1, while ys—, =7in. These equations show
that this scattering process results in the formation of a WCA as-
sociated with the opening/closing of a scattering channel k{ at a crit-
ical incidence angle ..



WCAs are ubiquitous and can be implemented in a variety of
other photonic platforms. We can, for example, implement them in
one-dimensional coupled resonators optical waveguide (CROW)
arrays at the vicinity of a band edge. A simple realization is shown
in Fig. 1D, where two CROW arrays with resonant detuning 0 < U
< 2|t + t;| and coupling constants t;, < 0 are brought together.
When the detuning U varies (e.g., due to exposure of one of the two
CROWs to a biological agent or changes of the ambient temperature or
illumination), the transmittance/retlectance exhibits WCA for fre-
quencies near the band edges associated with the common trans-
mission frequency domain (see the Supplementary Materials for
detailed analysis). Another implementation of WCA involves a uniform
multimode waveguide (see Fig. 1E) in the vicinity of a mode threshold.
In this case, cross-sectional variations (e.g., due to pressure varia-
tions) will induce the closing/opening of a channel at one portion of
the waveguide, which, in turn, will be sensed as transmittance changes

following a sublinear WCA
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Fig. 1. Various WCA settings. (A) A WCA describing a square-root behavior of the scattering cross section in the vicinity of a channel threshold. Various forms of WCA are
represented by different line styles (for details, see the Supplementary Materials). (B) Scattering of a quantum particle from a step potential of height U. (C) Near TIR of a
monochromatic wave from the interface between two dielectric media with reflection indices n; = ny > n¢= n.. (D) Two CROW transmission lines with resonant frequency
detuning U. (E) A waveguide whose (right) portion is exposed to pressure variations leading to a distortion of its cross section, which induces a threshold WCA.
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Fig. 2. WCA accelerometer. (A) Experimental implementation of the TIR as a WCA protocol for a hypersensitive accelerometer. (B) Magnification of the mirror with the
attached test mass that is coupled to two torsional springs. (C) Schematic description of the platform shown in (A). (D) Measured differential signal / versus in-plane accel-
eration a (filled blue circles). The system is calibrated to demonstrate a TIR when it is at rest. Any acceleration will lead to a WCA. The black line indicates the Puiseux
expansion near WCA. Photo credit: (A and B) Rodion Kononchuk, Wesleyan University.
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Fig. 3. Beam divergence effects and WCA-sensitivity. (A) Measured differential signal / versus in-plane accelerations o (blue filled circles) reported in log-log plot. The
theoretical calculation that incorporates the Gaussian beam divergence of 0.3 mrad is shown in the red solid line. The black dotted line has a slope of '/,, while the black
dashed line indicates the linear slope of the conventional acceleration sensor with the same maximum output and with linear sensitivity. The green double-sided arrow
indicates the dynamic range enhancement of the proposed WCA sensor. (B) Measured sensitivity of the accelerometer y = dl/do. (blue filled circles). The red solid line
describes the theoretical curve that takes into consideration the Gaussian beam divergence associated with the characteristics of our lasing source (0.3-mrad beam diver-
gence). In the same figure, we also report with a dark red (purple) dashed-dotted line the theoretically calculated sensitivity for a lasing source with a beam divergence of
1.5 mrad (7.5 mrad). The black dotted line has a slope of —'/, while the black dashed line indicates a constant sensitivity ¥ = 0.67 g ' of a conventional linear accelerometer
(see the main text). The green double-sided arrow indicates the sensitivity enhancement of the proposed WCA sensor.
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Figure S1: Reflection of Gaussian beam from a dielectric interface: (A) Real part of the === Fresnel Eq.

reflection amplitude of the p-polarized Re(r,) light calculated using Fresnel’s equations (blue - = Eq.9

dotted line) and taking into consideration divergence effects due to a Gaussian beam shape (red
line). (B) Magnification of the domain around the black square frame shown in (A). The blue
dashed line 1s the linear approximation calculated from Eq. (9) (see main text), while the vertical
green dashed lines indicate the Gaussian laser beam divergence used in the calculations. (C)
The imaginary part of the reflection amplitude of the p-polarized Zm(r,) light calculated using
Fresnel’s equations (blue dashed line) and taking into consideration the divergence effects of
the Gaussian beam (red line). (D) Magnification of the domain around the black square frame
shown 1n (C). The blue dashed line 1s the linear approximation calculated from Eq (9) (see main
text), while the vertical green dashed lines indicate the Gaussian laser beam divergence used in
the calculations.
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Figure S3: Schematics of the CROW array interface. Left/right CROW transmission lines
are shown by blue/red resonators (see also Fig. 1D of the main text). The supported bands
of the left/right transmission lines are shown by the blue/red region. The black vertical arrow
indicates the region where the bands overlap forming a transmission band of the interface. The
black dashed box indicates the system described by the Hamiltonian H.
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Figure S4: Transmission Spectrum and WCA for a CROW array. (A) Transmission spec-
trum of the CROW array interface shown in Fig. S3 (see also Fig. 1D). The parameters used
arety = —1,ty, = —2, § = —1 and U = 4. The transmission band in this case is within the
frequency range of w € |0, 2|. (B) Magnification of the transmission spectrum at the vicinity of

the lower frequency threshold corresponding to w§1> = (). In the inset we show 1n a log-log plot

the dependence of transmittance 7' for small frequency detunings € = w — wél). (C) Dependence
of the transmittance from the CROW detuning parameter U near its threshold value U; = 4 for
an incident wave at fixed frequency w = cut(l). In the 1inset we show the transmittance versus

e = U; — U 1n log-log plot. (D) Transmission spectrum near the upper frequency threshold

wgz) = 2. In the 1nset we plot the transmittance versus detuning € = wt@) — w 1n a log-log plot.

The black dashed lines in subfigures (B-D) is proportional to /€ and is drawn in order to guide
the eye.

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

3.9 3.95 4

Frequency detuning, U

0.3 | | | | | | | | I | | | | | | |
0.25

0.2

0.15

0.1

0.05

0

1.9 € 195

_0.05 | | | | I | | | |

1.9 1.95 2
Frequency, w



Figure S5: General setting of a multimoded system with WCA. An example of a multimoded
scattering setting where n — 1 channels are open while the n-th channel undergoes a transition
from (A) closed to (B) open as an external stimuli enforces variations of the index of refraction
which lead to modification of its threshold.



For more details (physical, technical & mathematical) see our paper

Kononchuk et al., Sci. Adv. 2021; 7 : eabg8118 4 June 2021
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Enhanced avionic sensing based on
Wigner’s cusp anomalies

Rodion Kononchuk', Joshua Feinberg?, Joseph Knee?, Tsampikos Kottos'*

Typical sensors detect small perturbations by measuring their effects on a physical observable, using a linear re-
sponse principle (LRP). It turns out that once LRP is abandoned, new opportunities emerge. A prominent example
is resonant systems operating near Nth-order exceptional point degeneracies (EPDs) where a small perturbation
€ < 1 activates an inherent sublinear response ~"\E>¢ in resonant splitting. Here, we propose an alternative
sublinear optomechanical sensing scheme that is rooted in Wigner’s cusp anomalies (WCAs), first discussed in the
framework of nuclear reactions: a frequency-dependent square-root singularity of the differential scattering cross
section around the energy threshold of a newly opened channel, which we use to amplify small perturbations.
WCA hypersensitivity can be applied in a variety of sensing applications, besides optomechanical accelerometry
discussed in this paper. Our WCA platforms are compact, do not require a judicious arrangement of active ele-
ments (unlike EPD platforms), and, if chosen, can be cavity free.



