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Auxiliary: Thomson problem (1904)

electrons on sphere

Electrons localized at x1, ..., xN .

The electrostatic interaction energy between a pair of electrons of equal charges

U = k
e2

rij
, rij = |xi − xj | , xi ∈ S2 .

The total electrostatic potential energy of each N-electron (k = e = 1)

U(N) =
∑
i<j

1
rij
.
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Formulation of problem.
Determine the minimum potential energy configuration of N electrons constrained to
the surface of a unit sphere that repel each other with a force given by Coulomb’s law.
Find a configuration of electrons for which

U(N) =
∑
i<j

1
rij
.

assumes minimum.
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Generalized Thomson model

Consider a continuous function f : [0, 4)→ [0,∞). Given a finite subset C of
points residing on the unit sphere S2 define the potential energy of C to be∑

xi ,xj∈C,i 6=j

f (|xi − xj |2) . (1)

Completely monotonic function
f is completely monotonic if

(−1)k f (k)(x) ≥ 0 , ∀x ∈ I , ∀k ≥ 0 .

If the above inequality is strict the function is completely strictly monotonic.

Cohn – Kumar Theorem
If f strictly completely monotonic, then (1) achieves unique minimum for C
determining the sharp configuration.
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Sharp agreement

Consider N points {xi}N
i=1 placed on a unit sphere S2. They are said to form

an M-spherical design if for any polynomial function S2 3 x 7→ p(x) of total
degree at most M its mean over {xi} coincides with the mean over the sphere,∫

S2
p(x) dx =

1
N

N∑
i=1

p(xi ) .

Suppose further that m denotes the number of the different values of inner
product between the points, then {xi}N

i=1 is called a sharp configuration if it is
2m − 1 spherical design.
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Sharp agreement

Rigorously identified sharp configurations.
N = 2, the optimal configuration consists of electrons at antipodal points.

N = 3, electrons reside at the vertices of an equilateral triangle about a
great circle.
N = 4, electrons reside at the vertices of a regular tetrahedron.
N = 5, a mathematically rigorous computer-aided solution was reported in
2010 with electrons residing at vertices of a triangular dipyramid.
N = 6, electrons reside at vertices of a regular octahedron.
N = 12, electrons reside at the vertices of a regular icosahedron.

7th Smale’s problem.
For the remaining N the problem is still open.
Thomson problem belongs to the Smale’s problems list of eighteen unsolved
problems in mathematics (proposed by Steve Smale in 1998).
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Thomson problem - known solutions

Configuration for N = 2,3,4,5
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Thomson problem solutions vs Platonic solids

Platonic solid - regular, convex polyhedron, constructed by congruent
(identical in shape and size) regular (all angles equal and all sides equal)
polygonal faces with the same number of faces meeting at each vertex. Five
solids meet these criteria:

source: Wikipedia 1. Tetrahedron - Four faces (N=4)
2. Cube - Six faces (N=8)
3. Octahedron - Eight faces (N=6)
4. Dodecahedron - Twelve faces (N=20)
5. Icosahedron Twenty faces (N=12)
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Thomson problem versus Platonic solids

N = 4 ,6 ,12
Geometric solutions of the Thomson problem for N = 4 ,6 ,12 electrons are
known as Platonic solids whose faces are all congruent equilateral triangles.

source: Wikipedia

N = 8 ,N = 20
Numerical solutions of Thomson problem for N = 8 , 20 are not the regular convex polyhedral
configurations of the remaining two Platonic solids, whose faces are square and pentagonal,
respectively.
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Star shaped wire in R3

Formulation of problem: attractive star in R3. N- number of arms,
L- length of each arm, α - coupling constant.

Γ = Γ1 ∪ Γ2 ∪ ... ∪ ΓN .

Hamiltonian

Hα,Γ = ”−∆ + αδ(x − Γ)” . (2)
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Self-adjoint realization of Hα,Γ

What is Hamiltonian with the star shape potential?
Operator

Hα,Γ = ”−∆ + αδ(x − Γ)” .

is defined as a self-adjoint extension of

−∆|C∞
0 (R3\Γ) .

Hα,Γ = ”−∆ + αδ(x − Γ)” is defined by means of the boundary conditions on
Γ.

Attractivity of the potential
Two dimensional system with one point interaction µα,1 = −4e2(−2πα+ψ(1)).
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Boundary conditions, definition of Hamiltonian

Given f ∈ W 2,2
loc (R3 \ Γ) we pick a point s ∈ Γi and its neighborhood (in the plane perp.

to Γi at s) Ui of s disjoint with Γ \ Γi and consider the restriction f �Ui which is locally (in
Ui ) a distribution. Assume that

Ξ(f )(s) := − lim
ρ→0

1
ln ρ

f �Ui (s) ,

Ω(f )(s) := lim
ρ→0

[
f �Ui (s) + Ξ(f )(s) ln ρ

]
exist almost everywhere in (0, L) for any i = 1, . . . , n.

Impose

2παΞ(f ) = Ω(f ) , (4)

Hα,Γf (x) = −∆f (x) , x ∈ R3 \ Γ .

D(Hα,γ) := {f ∈ W 2,2
loc (R3 \ Γ) ∩ L2(R3) : f satisfies (4)}
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Spectral stage

Question 1.
essential spectrum discrete spectrum  (??) 

0

Analogy to well potential
For attractive interaction the ground state energy goes down if the attractive
components approach and goes up if the attractive components go away.

Question 2. Main question:
For which configuration of arms the ground state energy is maximal?
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Does the discrete spectrum always exists for the star
shape potential?

Two dimensional model: There exists always non empty discrete
spectrum provided potential is attractive

P. Exner, V. Lotoreichik; 2018
The maximum the ground state energy is (uniquely) achieved for the regular
polygon with angle 2π

N .
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Existence of discrete spectrum, cont.

Three dimensional model; existence
Th. [P.Exner, SK, 2019] If L > 2π e2πα−ψ(1) then

σdisc 6= ∅ ,

whereΠ− ψ(1) ≈ 0.577.

Three dimensional model; non existence
Th. [P.Exner, SK, 2019] If

N
1

2π
ln

L
4

+ C2 < α , (5)

where C2 =
∑

i 6=j

( 1
4π | lnφij |+ C1) . Then

σdisc = ∅ . (6)

In particular, if the star in too small/weak then (6) holds.
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Optimization: Solution

Theorem. P. Exner, SK, 2019
Assume that N ∈ {2,3,4,6,12}. The lowest energy of Ĥα,Γ assumes the
unique maximum for Γ realizing the following configurations
N = 2 antipodal points,
N = 3 simplex with inner product −1/2,
N = 4 tetrahedron,
N = 6 octahedron,
N = 12 icosahedron,

Denote the above configuration as Σ.
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Birman Schwinger principle poles of the resovent

Resolvent

Rα,Γ(z) = R(z)− RΓ(z)(α−Qκ,Γ)−1R̆Γ(z) , z = −κ2

Birman-Schwinger principle
Rephrasing the investigation of σdisc(Hα,Γ) as analysis of the operator Qκ,Γ can be
expressed concisely as

f ∈ ker(α−Qκ,Γ) ⇔ Hα,Γgκ = −κ2gκ where gκ = Gκ ∗ f . (7)
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Ideas of proofs.

We investigate ker(α−Qκ,Γ) . The operator-valued matrix

Qκ,Γ := [T ij
κ,Γ]N

i,j=1 ,

N⊕
i=1

L2([0, L]) (8)

T ij
κ,Γ : L2([0, L])→ L2([0, L]) are integral operators with the kernels Tκ;s,t (|Γ̄i − Γ̄j |2) := Gκ(|Γi (s)− Γj (t)|) if i 6= j

Greg
κ (Γi (s)− Γi (t)) if i = j

(9)

where

Gκ(x , x ′) =
1

4π

−κ|x−x′|

|x − x ′| , (10)

and Greg
κ is the regularized kernel with the logarithmic singularity removed.
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Ideas of proofs, cont.

We investigate
ker(α−Qκ,Γ)

−κ2 corresponds to the eigenvalue of Hα,Γ

(f ,T ii
κ,Γf ) = (f ,T ii

κ,Σf )

and, by Cohn – Kumar theorem:∑
i,j i 6=j

Tκ;s,t (|Γ̄i − Γ̄j |2) ≥
∑
i,j i 6=j

Tκ;s,t (|Σ̄i − Σ̄j |2) .

Find the configuration of {Γ1, ..., ΓN} such that

sup Qκ,Γ

assumes minimum.
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Find the configuration of {Γ1, ..., ΓN} such that

sup Qκ,Γ

assumes minimum.
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Ideas of proofs, cont.

sup Qκ,Γ ≥ (Qκ,Γ f̃ , f̃ )

≥
∑
i,j i 6=j

∫
L×L

Tκ;s,t ((|Γ̄i − Γ̄j |2))f (s)f (t)dsdt +
N∑

i=1

(fi ,T ii
κ,Γfi )

≥
∑
i,j i 6=j

∫
L×L

Tκ;s,t ((|Σ̄i − Σ̄j |2))f (s)f (t)dsdt +
N∑

i=1

(f ,T ii
κ,Σf )

= Πsup Qκ,Σ .
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Icosahedral packings in virus shells

Source: Wikipedia 

Source:
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Small angle asymptotics

L
θ

Γ1

Γ2

Γ1(s) = (s,0,0) : R→ R3 , Γ2(s) = (s cos θ, s sin θ,L) : R→ R3 ,

α

α
a

b

Point interaction in 2D

hα,1 = −∆(2) + δα(x − a) , hα,2 = −∆(2) + δα(x − a) + δα(x − b)
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Spectrum

Spectrum of hα,1 and hα,2

α,1μ

α,2μ

one point interaction

two points interaction

µα,1 = −4e2(−2πα+ψ(1)).

Essential spectrum of double line (parallel lines)
• For θ = 0 we have

σess(H0,α) = [µα,2,∞) .

Essential spectrum of double line (non parallel lines)
• For θ > 0 we have

σess(Hθ,α) = [µα,1,∞) , µα,2 < µα,1
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Properties of discrete spectrum

Discrete spectrum
• For θ > 0 there exists discrete spectrum in (µα,2 , µα,1) .

Theorem, SK’22
The function θ 7→ inf σ(Hθ,α) is increasing.

• It achieves maximum for θ = π
2 ,

• It achieves minimum for θ = 0.
• The whole discrete spectrum is contained in (µα,2 , µα,1) .

pushing down the spectrum
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Counting function asymptotics

Theorem, SK’22
For θ → 0 the number of discrete spectrum points behaves as

N = O(θ−1) .

We investigate ker(α−Qκ,Γ) . The operator-valued matrix

Qκ,Γ := [T ij
κ,Γ]2

i,j=1 ,

2⊕
i=1

L2([0, L]) (11)

T ij
κ,Γ : L2(R)→ L2(R) are integral operators with the kernels Dθ := Gκ(|Γi (s)− Γj (t)|) if i 6= j

Greg
κ (Γi (s)− Γi (t)) if i = j

(12)

|Γi (s)− Γj (t)| =
√

s2 + t2 + L2 − 2st cos θ .

We have
‖Dθ‖2

HS =

∫
R×R
|Gκ(|Γi (s)− Γj (t)|)|2 dsdt = O(θ−1) .
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Bounds for the counting functions of Hα,θ

Upper bound

]σess(Hα,θ) ≤ const + const · ‖Dθ‖2
HS = O(θ−1) .

Lower bound
Construction of N = [θ−1] functions φλ

(Hα,θφλ, φλ)− µ1,α(φλ, φλ) < 0
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Thank you for your attention

Sylwia Kondej (Inst. Phys. UZ) Quantum wires: spectral properties AAMP 27 / 27


