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Kagome lattice: the spectral condition

A quantum graph is a metric graph equipped with a differential operator acting

along the graph edges and is accompanied by appropriate vertex conditions.

We consider a quantum graph of

kagome type with the edge lengths

b and c assuming b + c = d

The operator to investigate here is

the particle Hamiltonian acting as

ψj 7→ −ψ′′j assuming ~ = 2m = 1.
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The coupling condition (P Exner and M Tater, Phys. Lett. A 382 (2018))

We assume the coupling condition (ψj+1 − ψj) + i`(ψ′j+1 + ψ′j ) = 0 which, obviously,

violates the time-reversal invariance; we use the symbols ψj (ψ′j ) for the boundary value

of the function ψj (respectively, ψ′j ) at the given vertex.
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Seeking a solution at energy E = k2 > 0, we employ the following Ansatz

ψj (x) = B+
j e ikx + B−j e−ikx , x ∈ [0, 1

2
c], j = 1, 2,

ψj (x) = B+
j e ikx + B−j e−ikx , x ∈ [0, 1

2
b], j = 3, 4,

ϕj (x) = C+
j e ikx + C−j e−ikx , x ∈ [− 1

2
b, 0], j = 2, 3,

ϕj (x) = C+
j e ikx + C−j e−ikx , x ∈ [− 1

2
c, 0], j = 1, 4,

χ1(x) = D+
1 e ikx + D−1 e−ikx , x ∈ [0, 1

2
c],

χ2(x) = D+
2 e ikx + D−2 e−ikx , x ∈ [− 1

2
b, 0],

χ3(x) = D+
3 e ikx + D−3 e−ikx , x ∈ [0, 1

2
b],

χ4(x) = D+
4 e ikx + D−4 e−ikx , x ∈ [− 1

2
c, 0].

Floquet conditions at the free ends of the cell

χ1( c
2

) = e iθ1ϕ4(− c
2

), χ′1( c
2

) = e iθ1ϕ′4(− c
2

),

ψ1( c
2

) = e iθ2ϕ1(− c
2

), ψ′1( c
2

) = e iθ2ϕ′1(− c
2

),

ψ2( c
2

) = e i(θ2−θ1)χ4(− c
2

), ψ′2( c
2

) = e i(θ2−θ1)χ′4(− c
2

),

for some θ1, θ2 ∈ [−π, π)

At the segment midpoints

χ2(0) = ψ4(0), χ′2(0) = ψ′4(0),

ϕ3(0) = ψ3(0), ϕ′3(0) = ψ′3(0),

ϕ2(0) = χ3(0), ϕ′2(0) = χ′3(0).
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Imposing the matching conditions at each vertex of the graph cell, taking into

account that the derivatives are taken in the outward direction, we get

ψ2(0)− ψ1(0) + i`
(
ψ′2(0) + ψ′1(0)

)
= 0,

ψ3( 1
2
b)− ψ2(0) + i`

(
−ψ′3( 1

2
b) + ψ′2(0)

)
= 0,

ψ4( 1
2
b)− ψ3( 1

2
b)− i`

(
ψ′4( 1

2
b) + ψ′3( 1

2
b)
)

= 0,

ψ1(0)− ψ4( 1
2
b) + i`

(
ψ′1(0)− ψ′4( 1

2
b)
)

= 0,

ϕ2(− 1
2
b)− ϕ1(0) + i`

(
ϕ′2(− 1

2
b)− ϕ′1(0)

)
= 0,

ϕ3(− 1
2
b)− ϕ2(− 1

2
b) + i`

(
ϕ′3(− 1

2
b) + ϕ′2(− 1

2
b)
)

= 0,

ϕ4(0)− ϕ3(− 1
2
b) + i`

(
−ϕ′4(0) + ϕ′3(− 1

2
b)
)

= 0,

ϕ1(0)− ϕ4(0)− i`
(
ϕ′1(0) + ϕ′4(0)

)
= 0,

χ2(− 1
2
b)− χ1(0) + i`

(
χ′2(− 1

2
b) + χ′1(0)

)
= 0,

χ3( 1
2
b)− χ2(− 1

2
b) + i`

(
−χ′3( 1

2
b) + χ′2(− 1

2
b)
)

= 0,

χ4(0)− χ3( 1
2
b)− i`

(
χ′4(0) + χ′3( 1

2
b)
)

= 0,

χ1(0)− χ4(0) + i`
(
χ′1(0)− χ′4(0)

)
= 0.
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Spectral condition is obtained as

sin
kc

2
sin

kd

2
sin

k(d − c)

2

(
λ1(k)− λ2(k) fθ −λ3(k) gθ

)
= 0

where

λ1(k) := 2(k2
`

2 + 1)
(

4(k2
`

2 + 1)2( cos k(c + d) + cos k(c − 2d) + 2 cos kd + cos 2kd
)

+
(

3k4
`

4 + 18k2
`

2 + 3
)

+
(
k4
`

4 + 14k2
`

2 + 1
)

(2 cos kd + 1) cos k(2c − d) +
(

5k4
`

4 + 22k2
`

2 + 5
) (

cos k(d − c) + cos kc
))
,

λ2(k) := 8
(
k2
`

2 + 1
) (

k2
`

2 − 1
)2

cos
k(d − c)

2
cos

kc

2

(
cos

k(2c − d)

2
+ 2 cos

kd

2

)
,

λ3(k) := 16k`
(
k2
`

2 − 1
)2

sin
k(d − c)

2
sin

kc

2
sin

k(d − 2c)

2
.

and
fθ := cos θ1 + cos(θ1 − θ2) + cos θ2, − 3

2
≤ fθ ≤ 3,

gθ := sin θ2 + sin(θ1 − θ2)− sin θ1, − 3
√

3
2
≤ gθ ≤ 3

√
3

2
.
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Positive spectrum: spectral conditions

sin
kc

2
sin

kd

2
sin

k(d − c)

2

(
λ1(k)− λ2(k) fθ − λ3(k) gθ

)
= 0

For d = 2c, i.e. the equilateral graph, the spectral condition reduces to

4
(
k2`2 + 1

)(
2 cos kc + 1

)
sin kc sin2 kc

2

×
((

k4`4 + 14k2`2 + 1
)

cos kc + 2(cos 2kc + cos 3kc + 1
2

)(k2`2 + 1)2− (cos kc + 1)(k2`2− 1)2fθ

)
= 0

i. Infinitely degenerate eigenvalues (flat bands)
In the general case, the number k2 belongs to the spectrum for k = 2nπ

l
with

l = {d − c, c, d} and n ∈ N; in the equilateral case, they merge into k2 = ( nπ
c

)2.

In the general case, for {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands

degenerate to the point k = `−1; in the equilateral case, this happens for
c = `

(
(−1)n+1 + (6n − 3)

)
π
12

.

In the equilateral case, the number k2 belongs to the spectrum for
k =

(
(−1)n+1 + (6n − 3)

)
π
6c

with n ∈ N.
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ii. Continuous bands

Continuous spectrum is determined by the condition

λ1(k) = λ2(k) fθ + λ3(k) gθ

Using the Hessian method of determining extrema of multivariate functions as

well as checking the boundaries of our rectangular domain, we find that:

A number k2 belongs to a spectral band if and only if

k ∈
{
k : λ±(k) ≤ λ1(k) ≤ λ0(k) ∪ λ0(k) ≤ λ1(k) ≤ λ±(k)

}
where

λ0(k) := 3λ2(k),

λ±(k) := −3
2

(
λ2(k)±

√
3λ3(k)

)

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 8 / 17



The band-and-gap pattern for particular values of parameters

i. c = ` = 1 ii. d = 6, ` = 1

For d ≥ 2
√

3 `, the positive spectrum starts at zero.

For {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands degenerate to `−1.

The spectral bands are symmetric with respect to the exchange of c to d − c.

The spectral gaps may close for some particular values of the parameters.

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 9 / 17



The band-and-gap pattern for particular values of parameters

i. c = ` = 1 ii. d = 6, ` = 1

For d ≥ 2
√

3 `, the positive spectrum starts at zero.

For {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands degenerate to `−1.

The spectral bands are symmetric with respect to the exchange of c to d − c.

The spectral gaps may close for some particular values of the parameters.

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 9 / 17



The band-and-gap pattern for particular values of parameters

i. c = ` = 1 ii. d = 6, ` = 1

For d ≥ 2
√

3 `, the positive spectrum starts at zero.

For {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands degenerate to `−1.

The spectral bands are symmetric with respect to the exchange of c to d − c.

The spectral gaps may close for some particular values of the parameters.

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 9 / 17



The band-and-gap pattern for particular values of parameters

i. c = ` = 1 ii. d = 6, ` = 1

For d ≥ 2
√

3 `, the positive spectrum starts at zero.

For {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands degenerate to `−1.

The spectral bands are symmetric with respect to the exchange of c to d − c.

The spectral gaps may close for some particular values of the parameters.

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 9 / 17



The band-and-gap pattern for particular values of parameters

i. c = ` = 1 ii. d = 6, ` = 1

For d ≥ 2
√

3 `, the positive spectrum starts at zero.

For {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands degenerate to `−1.

The spectral bands are symmetric with respect to the exchange of c to d − c.

The spectral gaps may close for some particular values of the parameters.

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 9 / 17



The band-and-gap pattern for particular values of parameters

i. c = ` = 1 ii. d = 6, ` = 1

For d ≥ 2
√

3 `, the positive spectrum starts at zero.

For {d − c, c, d} = `
(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N, the bands degenerate to `−1.

The spectral bands are symmetric with respect to the exchange of c to d − c.

The spectral gaps may close for some particular values of the parameters.

Marzieh Baradaran (UHK) AAMP XIX September 8, 2022 9 / 17



Asymptotic behavior of the spectral bands at high energies

To take a look at the bands structure in the high-energy regime, k →∞, we rewrite
the spectral condition λ1(k)− λ2(k) fθ − λ3(k) gθ = 0 in the form α(k) · k6 +O(k5) = 0
where

α(k) = 4

(
cos

k(2c − d)

2
+ 2 cos

kd

2

)
×

(
(2 cos k(c − d) + 4 cos kd − 1) cos

kd

2
+ cos

k(2c + d)

2
− 2 fθ cos

kc

2
cos

k(c − d)

2

)
.

Hence, as k →∞, the function α(k) should be close to zero which results in two

types of spectral bands:

Pairs of narrow bands in the vicinity of the points k which solve the

equation cos k(2c−d)
2 + 2 cos kd

2 = 0.

Wide bands which grow asymptotically; they correspond to those

values of k for which the function in the second bracket is close to

zero.
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In the high energy regime, a number k belongs to the spectral bands if

0 ≤ 5

4
+

cos kd cos k(2c−d)
2 + cos 3kd

2

cos k(2c−d)
2 + cos kd

2

≤ 9

4
,

with a relative error O(k−1) from which we can calculate the probability of being in the

spectrum [R. Band, G. Berkolaiko, Phys. Rev. Lett. 113 (2013)]

Pσ(H) := lim
K→∞

1

K
|σ(H) ∩ [0,K ]|

If c
d
∈ Q, it takes different values

0.0 0.2 0.4 0.6 0.8 1.0

0.62

0.63

0.64

0.65

0.66

c

d

P
ro

ba
bi

lit
y

if c
d
/∈ Q, the value is the same being ≈ 0.639

0 π 2π

0

π

2π

kd≡x

kc
≡

y
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In the equilateral case, i.e. d = 2c, the condition of belonging to the
spectral bands in the high energy regime reduces to

0 ≤ ξ(k) ≤ 9

8
; ξ(k) := cos kc − cos 2kc .

The function ξ(k) is periodic with period T = 2π
c and reaches its maximum

value, 9
8 , at k = 1

c |2mπ±arcsec 4| with m ∈ Z; then, it remains to calculate
the probability that ξ(k) is positive for a randomly chosen value of k .

By elementary calculus, one easily finds that ξ(k) is negative over the domain(
2π
3c ,

4π
3c

)
and thus, the probability of belonging to the spectrum, for any c ,

is equal to

Pσ(H) = 1− 1

T

(
4π

3c
− 2π

3c

)
=

2

3
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The negative spectrum

Replacing k by iκ with κ > 0 in the positive spectrum, we obtain the spectral condition

sinh
κc

2
sinh

κd

2
sinh

κ(d − c)

2

(
λ̃1(κ)− λ̃2(κ) fθ − λ̃3(κ) gθ

)
= 0

where

λ̃1(κ) := 2(1− κ2
`

2)

(
4(κ2

`
2 − 1)2

(
coshκ(c + d) + coshκ(c − 2d) + 2 coshκd + cosh 2κd

)
+

(
3κ4

`
4 − 18κ2

`
2 + 3

)
+

(
κ

4
`

4 − 14κ2
`

2 + 1
)

(2 coshκd + 1) coshκ(2c − d) +
(

5κ4
`

4 − 22κ2
`

2 + 5
) (

coshκ(d − c) + coshκc
))
,

λ̃2(κ) := 8(1− κ2
`

2)
(
κ

2
`

2 + 1
)2

(
cosh

κ(2c − d)

2
+ 2 cosh

κd

2

)
cosh

κ(d − c)

2
cosh

κc

2
,

λ̃3(κ) := 16κ`
(
κ

2
`

2 + 1
)2

sinh
κ(d − c)

2
sinh

κc

2
sinh

κ(d − 2c)

2
.

Flat bands: There exists flat band −`−2 only in the equilateral case.

Continuous bands: A number −κ2 belongs to a spectral band if

κ ∈
{
κ : λ̃±(κ) ≤ λ̃1(κ) ≤ λ̃0(κ) ∪ λ̃0(κ) ≤ λ̃1(κ) ≤ λ̃±(κ)

}
where λ̃0(κ) := 3 λ̃2(κ) and λ̃±(κ) := − 3

2

(
λ̃2(κ)±

√
3 λ̃3(κ)

)
.
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The general model The general model The equilateral model

There cannot be more than three negative bands [1, Theorem 2.6] which may
merge into each other (only in the general case).

The number −`−2 belongs to the spectrum; as the edge lengths tend to infinity,
the negative bands shrink to points below and above this energy.

The negative bands are symmetric with respect to the interchange of c and d − c.

For d ≤ 2
√

3 `, the first negative band reaches zero.

[1]. M. Baradaran, P. Exner, and M. Tater, Ann. Phys. 433, 168992 (2022)
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Triangula lattice

The kagome lattice degenerates to the triangular one when one of the edge lengths
shrinks to zero; the elementary cell now contains a single vertex of degree six.

c

b

b→0

⟹ d

The spectral condition can be derived in the same way as in the kagome lattice case or
by taking the limit c → d in the spectral condition of the kagome lattice; this yields

(
k2`2 + 1

)
sin2 kd

2

×
(

3
(
k4`4 + 6k2`2 + 1

)
+

(
3k4`4 + 10k2`2 + 3

)
(2 cos kd + cos 2kd)− 4(k2`2 − 1)2 cos2 kd

2
fθ

)
= 0
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The band-and-gap pattern for ` = 1

For k = 2nπ
d

with n ∈ N, the number k2

belongs to the spectrum (flat bands).

Positive bands degenerate to a point at
k = `−1 for d = `

(
(−1)n+1 + (6n − 3)

)
π
6

with n ∈ N.

In the high energy regime, the probability
of belonging to the spectrum is 2

3
.

The negative spectrum consists of two
bands, one negative band in each of the
domains κ ∈ (0, `−1) and (`−1,∞); there
is no flat band.

For large values of d , the negative bends
shrink to the energies −3`−2 and − 1

3
`−2.
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Thank you for your attention!
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