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Introduction

When pairs of commuting integrals quadratic in the momenta for
Hamiltonian systems in three spatial dimensions in Euclidean space
are considered, the famous classical paper [Makarov, Smorodinsky,
Valiev and Winternitz. Nuovo Cimento A Series 10, 52:1061-1084,
1967] which concerns the natural Hamiltonians

H = %,32 + V() (1)
concludes that the leading order terms of such integrals belong to
the universal enveloping algebra {(e3) of the Euclidean algebra and
can be written in 11 possible forms, each corresponding to an
orthogonal coordinate system in which the corresponding
Hamilton—Jacobi or Schrodinger equation separates.
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Introduction

In the presence of magnetic field we have observed in [A.
Marchesiello and L. Snobl, J. Phys. A 50 (24) (2017) 245202] that
while the leading order terms must still belong to $i(e3), a more
general leading order structure of the pair of integrals can appear,
at least in the particular case of integrals with leading order terms
involving only linear momenta (a.k.a. Cartesian type).
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Introduction

In the presence of magnetic field we have observed in [A.
Marchesiello and L. Snobl, J. Phys. A 50 (24) (2017) 245202] that
while the leading order terms must still belong to $i(e3), a more
general leading order structure of the pair of integrals can appear,
at least in the particular case of integrals with leading order terms
involving only linear momenta (a.k.a. Cartesian type).

Motivated by this result we study the algebraic structure
corresponding to the leading order terms, that means classify
three—dimensional Abelian subalgebras of quadratic elements in the
universal enveloping algebra l(e3) of the Euclidean algebra.
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Formulation of the problem

Let us consider the Hamiltonian system in the three—dimensional
Euclidean space of the form

1 - 1 .
H= 58+ AR) -5+ V() = 57 + W), 5 =5+ AR)
(2)
and its integrals of motion polynomial in the momenta. The
leading order terms of such an integral must belong to a
representation of the universal enveloping algebra LI(e3) of the
Euclidean algebra ¢3 = span{p1, p2, p3, 1, b, 3} such that

Z - 3)

between the linear momenta g = (p1, p2, p3) and the angular
momenta / = (/1, b, /3), /J = Zk,lejklxkp/' holds. (I.e. the

quadratic Casimir invariant p'- /| of e3 vanishes in the
representations relevant for our application.
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Formulation of the problem

Restricting ourself to the most tractable situation of quadratic
integrals of motion we are looking for pairs of commuting
quadratic elements in £l(e3) which obviously also commute with
the quadratic Casimir invariant h = p? = Zj pf of e3 and together
with it may define leading order terms of a triple of commuting
integrals of motion (including the Hamiltonian).

Commuting quadratic elements in ((¢3) and loMs

in collaboration with



Formulation of the problem

Restricting ourself to the most tractable situation of quadratic
integrals of motion we are looking for pairs of commuting
quadratic elements in £l(e3) which obviously also commute with
the quadratic Casimir invariant h = p? = Zj pf of e3 and together
with it may define leading order terms of a triple of commuting
integrals of motion (including the Hamiltonian). We may replace
elements in these triplets by any linear combination of them, thus
we are classifying three—dimensional Abelian subalgebras of
quadratic elements in (e3) (modulo relation (3)). Furthermore,
we have the transformations from the Euclidean group at our
disposal to simplify them, namely the rotations and translations.
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Formulation of the problem

Restricting ourself to the most tractable situation of quadratic
integrals of motion we are looking for pairs of commuting
quadratic elements in £l(e3) which obviously also commute with
the quadratic Casimir invariant h = p? = Zj pf of e3 and together
with it may define leading order terms of a triple of commuting
integrals of motion (including the Hamiltonian). We may replace
elements in these triplets by any linear combination of them, thus
we are classifying three—dimensional Abelian subalgebras of
quadratic elements in (e3) (modulo relation (3)). Furthermore,
we have the transformations from the Euclidean group at our
disposal to simplify them, namely the rotations and translations.

To sum up, we are looking for the classification of
three—dimensional Abelian subalgebras of quadratic elements
in 4/(e3) modulo equation §- /= 0 and transformations from
the Euclidean group.
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Classification: quadratic 3D Abelian subalgebras in £((e3) |

Any three—dimensional Abelian subalgebra span{h = p?, X1, Xo}
consisting of quadratic commuting elements in the universal
enveloping algebra $l(e3) can be modulo equation p'- I'=0 and
transformations from the Euclidean group written in terms of the
following pairs of elements

@
X1 = P+ B4 B +akps+bp?, Xo=12, abcR,
(b}
Xi = 45+ 5+ b(ap; + p3),
1
X, = a/22+/32—abpf,0<a§§,b€]R,
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Classification: quadratic 3D Abelian subalgebras in Li(e3) Il

Xy = B+ B+ E+2b(hpr — (33— 1)hps — 2hp3) +
+3b%((1 — 4a)pi — (3a° — 22— 1)p5 +2(a — 1)p3),
1
Xo = al3+I3+6ablip; +9ab*(ap+p3), 0<a< 5 b e R\{0},
@

1
Xi=185, Xo= 5 (hp2 + poh — bpy — p1h) 4 alsps, a > 0,
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Classification: quadratic 3D Abelian subalgebras in $i(e¢3)

@
X1 = B +2a(hp1 — hp2) + 2°p3,
1
Xo = 5 (hp2 + p2h — bpr — p1h) — ap1p2, a >0,
Xy = I3+ akps+ bp} + cpips + dp2ps,
X2 = p§7 a7b€RaC207d207
(g

X1 = /32 + ap%, Xo = hps + bp§, a,beR,
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Classification: quadratic 3D Abelian subalgebras in $i(e¢3)

IV

@
X1 = hpi+abpy— (a+1)hps + bp3,
2a+1 1
X = 242 T2 <0,b
2 P1+ a+2p27 2<a_03 GRa
@

Xy = hp1+ap; + bpps, Xo=pi, acR, b>0,
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Classification: quadratic 3D Abelian subalgebras in $((e3) V

(i)
w
X1 = hpi+abpy—(a+1)hps+ 5 (hps + psh — hp1 — p1k)
+2bp1p2 + ¢ (p3 — p3)
6w a+?2 ba+1
X, — p2 2 2
2 P1+4371P1P3+4371P2 11"
wherew=v1+a—-2a% -3 <a<0,b>0 ceR,
Xy = pi+ap;,
1
Xo = p5+bpip>+ cpips + dpaps, OSBSE,bZO,CZ()vdGR
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Comparison with integrals for natural Hamiltonians |

Let us compare our classification with the leading order terms of
the pairs of commuting quadratic integrals of the systems classified
in Makarov et al. There, the following possibilities appeared, each
related to an orthogonal coordinate system:

| Cartesian X1 = p?, Xp = p3.
[I' Cylindrical X; = /32, X = p%.
Il Elliptic cylindrical
X1 = /3 +Ap1, X2:p32,, A>0.
IV Parabolic cylindrical Xy = hpy + p1h, Xo = pg.
V Spherical Xi = 2+ 13+ 15, Xo =I3.
VI Prolate spheroidal
Xi=R+B+1B—-APp>+p3), Xo=12, A>0.
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Comparison with integrals for natural Hamiltonians I

VII

VIl

IX

X

Xl

Oblate spheroidal

Xi=P+B+1E2+AP?+p3), Xo=102 A>0.
Parabolic rotational (also known as circular
parabolic) X1 = 12,  Xo = hpo + poh — bhp1 — p1h,
Conical

Xi=PB+1B+12 Xo=B%Z+C*2, C>B>0.
Ellipsoidal

X1 =13+ 13+ 12+ (A>+ B?)p? + A%p3 + B?p3,
Xo = B213 + A%2 + A°B2p?,A> B > 0.
Paraboloidal

X1 =15+ A(hpz + p2h) — B(kp1 + p1k) — ABp3,
Xo = (hp2 + po2h — bp1 — prh) — A(p3 + p3) —
B(p?+p3), B>A>0
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Comparison with integrals for natural Hamiltonians Il

Let us indicate where are these pairs included in our classification
and whether for the given case the matching is exact or more
general structure is in principle possible for non—scalar
Hamiltonians.
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Comparison with integrals for natural Hamiltonians Il

Let us indicate where are these pairs included in our classification
and whether for the given case the matching is exact or more
general structure is in principle possible for non—scalar
Hamiltonians.

The Cartesian case | is included in the class (k), which however
contains four parameters, whereas the Cartesian case | has none.
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Comparison with integrals for natural Hamiltonians Il

Let us indicate where are these pairs included in our classification
and whether for the given case the matching is exact or more
general structure is in principle possible for non—scalar
Hamiltonians.

The Cartesian case | is included in the class (k), which however
contains four parameters, whereas the Cartesian case | has none.
The cylindrical Il and elliptic cylindrical I cases are included in
the class (f) (with A = b); however, three additional terms of the
form hps, p1ps and pop3 in Xy are allowed by the algebraic
structure of £(e3).
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Comparison with integrals for natural Hamiltonians Il

Let us indicate where are these pairs included in our classification
and whether for the given case the matching is exact or more
general structure is in principle possible for non—scalar
Hamiltonians.

The Cartesian case | is included in the class (k), which however
contains four parameters, whereas the Cartesian case | has none.
The cylindrical Il and elliptic cylindrical I cases are included in
the class (f) (with A = b); however, three additional terms of the
form hps, p1ps and pop3 in Xy are allowed by the algebraic
structure of £(e3).

The parabolic cylindrical case IV is contained in the class (j) upon
a transformation, with the parameters chosen as a =0, w = 1,
b=c=0.
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Comparison with integrals for natural Hamiltonians IV

We observe that the spherical, prolate and oblate spheroidal cases,
i.e. V, VI, VII, all belong to the class (a) with the identification

A = b € R which, however, allows an additional term of the form
/3p3 in Xl.
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Comparison with integrals for natural Hamiltonians IV

We observe that the spherical, prolate and oblate spheroidal cases,
i.e. V, VI, VII, all belong to the class (a) with the identification
A = b € R which, however, allows an additional term of the form
/3p3 in Xl.

The parabolic rotational (also known as circular parabolic) case
VIl is contained in the class (d) which again allows extra term

I p3, this time in X5.
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Comparison with integrals for natural Hamiltonians IV

We observe that the spherical, prolate and oblate spheroidal cases,
i.e. V, VI, VII, all belong to the class (a) with the identification
A = b € R which, however, allows an additional term of the form
/3p3 in Xl.

The parabolic rotational (also known as circular parabolic) case
VIl is contained in the class (d) which again allows extra term

I p3, this time in X5.

The conical and ellipsoidal cases IX and X correspond to the

case (b), namely, the conical becomes (b) with a = g—; and b=0,
the ellipsoidal becomes (b) with a = B?/A2 and b = —A2.
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Comparison with integrals for natural Hamiltonians IV

We observe that the spherical, prolate and oblate spheroidal cases,
i.e. V, VI, VII, all belong to the class (a) with the identification
A = b € R which, however, allows an additional term of the form
/3p3 in Xl.

The parabolic rotational (also known as circular parabolic) case
VIl is contained in the class (d) which again allows extra term

I p3, this time in X5.

The conical and ellipsoidal cases IX and X correspond to the

case (b), namely, the conical becomes (b) with a = g—; and b=0,
the ellipsoidal becomes (b) with a = B?/A2 and b = —A2.

The paraboloidal case XI can be matched precisely with the

class (e).
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Comparison with integrals for natural Hamiltonians V

The classes (c), (g), (h) and (i) do not have their counterparts in
the classification of quadratically integrable natural Hamiltonian
systems.
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Example 1

To illustrate that these generalizations are indeed realized in some
integrable systems, let us consider the class (i) with vanishing
parameter b and nonvanishing a. We first rotate our reference
frame to write the algebra in an equivalent form

Xi=hps+apl, Xo=p3, a#0. (4)

in collaboration with

Commuting quadratic elements in ((¢3) and loMs



Example 1

To illustrate that these generalizations are indeed realized in some
integrable systems, let us consider the class (i) with vanishing
parameter b and nonvanishing a. We first rotate our reference
frame to write the algebra in an equivalent form

Xi=hps+apl, Xo=p3, a#0. (4)

Solving the equations coming from various powers of the momenta
in the commutativity conditions

{H,Xl}P.B. = {H,XZ}P.B. = {X17X2}P-B~ =0, (5)

we find a five parameter family of integrable systems with
magnetic field.
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Example 1

Its magnetic field, the vector potential and the electrostatic
potential are

- o b b b
BR) = (- b, br) . AR) = (- o =202 40) ) (9)

- b0 +x3)°  abpbz(x} —
W(X) = — w(X18 ) - Z(;l X)+W3(X1 +X2)+W1X1+W2X2

We have the integral

2 bzb -2 -
X1 = I3p3—|—apf—|— X2W;+W2 1 302004 b s Wlpz—bvaxfm—
v o
4 2
_a(abzb¢_2W3)xf+wxl+ﬁxg+ bZW2X2 )
2b,, 4 2b,

and the second integral reduces to a first order one,

X2 = p3. (8)
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Example 1 — limits

The system described by (6) does not possess any other integrals
linear or quadratic in the momenta for generic nonvanishing values
of its parameters determining the magnetic field b, and bz. Thus

its integrals cannot be expressed in the form of any of the classes
l,..., Xl of Makarov et al.

in collaboration with
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Example 1 — limits

The system described by (6) does not possess any other integrals
linear or quadratic in the momenta for generic nonvanishing values
of its parameters determining the magnetic field b, and bz. Thus
its integrals cannot be expressed in the form of any of the classes
l,... ., Xl of Makarov et al. However, if we take the limit by — 0,
the parameter a drops out from the potential (6), thus it has no
relevance for the system. Consequently, the terms linear and
constant in a in the integral X; (7) separately become integrals (a?
term is multiplied by b,bz and thus vanishes).
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Example 1 — limits

Thus we have a quadratically minimally superintegrable system

with
— b2
B(X) = (~bpx2 b2, 0), W(R) = =0 ha ) w3 H3)Fwix woxo,
| (9)

and the integrals

X' = hp: — 2W3/ + w2 M

1 3P3 b, 3 b, b1 — b, P2,
X! = pf — b¢xl2p3 + 2W3X12 + 2w xy, (10)

Xa = ps.

Among them we can choose a commuting pair of integrals X;" and
X> corresponding to Cartesian separation, i.e. class I.
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Example 1 — limits

Similarly, we may consider the limit b, — 0 in which, however, the
integral X1 becomes singular. The system is now characterized by
the constant magnetic field and the potential of the form of a
(shifted) isotropic harmonic oscillator in the x;x; plane

B(X) = (0,0,b7), W()=ws(x?+x3) + wixi + woxa. (11)

Assuming that the frequency of the oscillator is nonvanishing, i.e.
wsz # 0, we find the first order integral

~ 7% w-
Vim b= et bzy) 4 -Cp = bza)  (12)

by multiplying X1 by b, and next taking the limit b, — 0. We also
observe that provided wz # 0 we can now set w; = wp =0
without loss of generality by a shift of the coordinate system
accompanied by a gauge change.
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Example 1 — limits

The system (11) and its integrals obtain a particularly simple form

B(X)=(0,0,bz), W(X)=ws(x{ +x3), Yi=h, Ya=ps,
(13)
belonging to the cylindrical class Il. The system (13) does not
possess any other independent linear or quadratic integrals (except
when ws = —2b2 holds).
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Example 1 — limits

The system (11) and its integrals obtain a particularly simple form

B(X)=(0,0,bz7), W(X)=ws(:x?+x3), Yi=h, Yo=ps,

(13)
belonging to the cylindrical class Il. The system (13) does not
possess any other independent linear or quadratic integrals (except
when w3 = —%b% holds). Thus we see that in the limit b, — 0
the integrable system (6) goes into the integrable system (13);
however, the class the commuting integrals belong to changes in
this limit, from (i) to (f). In other words the limit b, — 0 forces
also the parameter a in the class (i) to vanish despite the fact that
the Hamiltonian goes into the form characterised by (13)
irrespectively of the value of a.
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Example 2 — mathematical model of helical undulator in a

solenoid

As a second illustration of the relevance of our classification, let us
consider the generalized cylindrical class (f) with the parameter
choice b = 0. As reported in our recent preprint O. Kubd, A.
Marchesiello and L. Snobl, arXiv:2206.15305, in this class several
integrable systems can be found.
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Example 2 — mathematical model of helical undulator in a

solenoid

As a second illustration of the relevance of our classification, let us
consider the generalized cylindrical class (f) with the parameter
choice b = 0. As reported in our recent preprint O. Kubd, A.
Marchesiello and L. Snobl, arXiv:2206.15305, in this class several
integrable systems can be found. Among them there is one
quadratically superintegrable system. lts magnetic field B, the
electrostatic potential W and the vector potential A in our chosen
gauge are

5 2 2z
B(X,y,Z) = <b3 Cos (az> b35|n < B > bl) W(X,yaz) = O,

- b 2 b3 2
A(X,y,Z) = (—ZaCOS< az> b1X+7aSIn < az> ,O> (14)
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Example 2 — mathematical model of helical undulator in a

solenoid

If b3 =0, the system reduces to the well-known superintegrable
system with constant magnetic field. The superintegrability of the
system with by = 0 is known as well, see [A. Marchesiello, L.
Snobl, P. Winternitz, J. Phys. A 48 (39) (2015) 395206.]. As
observed in [T. Heinzl, A. llderton, J. Phys. A 50 (34) (2017)
345204, it describes motion of electrons in a nonrelativistic limit
of a helical undulator.
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Example 2 — mathematical model of helical undulator in a

solenoid

If b3 =0, the system reduces to the well-known superintegrable
system with constant magnetic field. The superintegrability of the
system with by = 0 is known as well, see [A. Marchesiello, L.
Snobl, P. Winternitz, J. Phys. A 48 (39) (2015) 395206.]. As
observed in [T. Heinzl, A. llderton, J. Phys. A 50 (34) (2017)
345204, it describes motion of electrons in a nonrelativistic limit
of a helical undulator.

Remark: Undulators are devices for generation of powerful
coherent radiation using beams of charged high energy particles,
typically electrons. Electrons are traversing suitable magnetic field,
forced to undergo oscillations and thus to radiate energy.
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Example 2 — mathematical model of helical undulator in a

solenoid

When by b3 # 0 we study the motion of (nonrelativistic) electrons
in the field of a helical undulator placed in an infinite solenoid.
Relativistic version of such a system was recently proposed and
experimentally realized as a simple and efficient source of coherent
spontaneous THz undulator radiation in [N. Balal, I. V. Bandurkin,
V. L. Bratman, A. E. Fedotov, Phys. Rev.: Accelerators and
Beams 20 (2017) 122401.].

in collaboration with Commuting quadratic elements in ((¢3) and loMs



Example 2 — mathematical model of helical undulator in a

solenoid

The system (14) admits three first order integrals reading

bza 22
Y, = b —

bs 2
Y, = py — bix — TQSin <az> , (15)

1 2 2
Ygzlf—fp?—f bi1r? + bzasin i x + bzacos i vyl .
2 2 a a
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Example 2 — mathematical model of helical undulator in a

solenoid

The system (14) admits three first order integrals reading

bza 22
Y, = b —

bs 2
Y, = py — bix — ?asin <az> , (15)

VSIS P in (%2 2z
Y3=1, 2pZ 5 [blr +bgasm<a)x+b3acos<a>y].
They do not commute, as their Poisson brackets read
{yi,Y2}=b1-1, {V,Ys}=-Yz, {Yo,¥3}=V1. (16)

Thus together with the constant identity function 1 they constitute
a solvable Lie algebra.
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Example 2 — mathematical model of helical undulator in a

solenoid

Its Casimir invariants are H,1 and
K=Y+ Y:+2b1Y3 (17)

(see e.g. [L. Snobl and P. Winternitz, Classification and
Identification of Lie Algebras, AMS 2014]). By an explicit
calculation we find that all second order integrals are functions of
integrals H, Y;.
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Example 2 — mathematical model of helical undulator in a

solenoid

Its Casimir invariants are H,1 and
K=Y+ Y:+2b1Y3 (17)

(see e.g. [L. Snobl and P. Winternitz, Classification and
Identification of Lie Algebras, AMS 2014]). By an explicit
calculation we find that all second order integrals are functions of
integrals H, Y;.

The Casimir invariant K commutes with all integrals of order at
most 2, as well as the Hamiltonian. Thus, instead of K we may
equivalently consider our integral Xo = 2H — K:

2 2z . [2z b3a®
X = (pf) —bzacos () p2+ bzasin (a) p;‘—i-ablpzA_ 34 )
1

a
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Example 2 — mathematical model of helical undulator in a

solenoid

Every commuting triple of quadratic integrals can then be written
as a linear span of H, X5 and another second order integral
constructed out of Y7, Y2, Y3. Its role can be played by, e.g., the
generalized cylindrical integral

X =v2- 2 x2 v2 42 (Y1—|—Y2—|—2b1Y3—2H) (19)

or by the integral YZ; thus, we see that the system (14) lies at the
intersection of classes (f) and (k) and does not belong to any other
class. It can be shown that its Hamilton—Jacobi equation does not
separate in any orthogonal coordinate system in R3.
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Example 2 — mathematical model of helical undulator in a

solenoid

In the absence of the electrostatic potential, W(X) = 0, the
relativistic Hamiltonian expressed in the instant form

Hrel -\ 1+ (pﬁ)z + W(;)a

is a function of the nonrelativistic Hamiltonian (2).
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Example 2 — mathematical model of helical undulator in a

solenoid

In the absence of the electrostatic potential, W(X) = 0, the
relativistic Hamiltonian expressed in the instant form

Hrel -\ 1+ (pﬁ)z + W(;)a

is a function of the nonrelativistic Hamiltonian (2). Thus the
same nonabelian algebra of integrals of motion (15) is also present
when motion of a relativistic electron in the helical undulator
placed in an infinite solenoid is considered, as long as the radiation
emitted by the electron is neglected. This observation may be
helpful in theoretical analysis of undulators of the type proposed by
Balal et al.
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Conclusions

We have classified all possible three—dimensional Abelian algebras
of quadratic elements in any representation of the universal
enveloping algebra $i(e3) such that the quadratic Casimir element
p- I vanishes.
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Conclusions

We have classified all possible three—dimensional Abelian algebras
of quadratic elements in any representation of the universal
enveloping algebra $i(e3) such that the quadratic Casimir element
p- I'vanishes. The motivation and need for this classification come
from the theory of integrable systems, since such subalgebras
encode possible leading order terms of commuting integrals of
motion quadratic in the momenta. We have seen that this
classification in principle allows for more general forms of integrals
of motion than the well known result of Makarov et al. which was
derived for systems involving only the scalar potential.
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Conclusions

Next, we have demonstrated an example of an integrable system
involving magnetic field with such more general structure of its
integrals, cf. (6). We have seen that in two limits simplifying the
structure of the magnetic field we have different behaviour.
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Conclusions

Next, we have demonstrated an example of an integrable system
involving magnetic field with such more general structure of its
integrals, cf. (6). We have seen that in two limits simplifying the
structure of the magnetic field we have different behaviour.
Namely, in one limit one of the original integrals splits into two
independent integrals, i.e. the system becomes minimally
superintegrable, and a simpler choice of the pair of commuting
integrals is available.
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Conclusions

Next, we have demonstrated an example of an integrable system
involving magnetic field with such more general structure of its
integrals, cf. (6). We have seen that in two limits simplifying the
structure of the magnetic field we have different behaviour.
Namely, in one limit one of the original integrals splits into two
independent integrals, i.e. the system becomes minimally
superintegrable, and a simpler choice of the pair of commuting
integrals is available. In another limit, the system stays only
quadratically integrable but the leading order structure of the
integrals changes. One original integral becomes singular in the
limit and a new integral arises, effectively forcing a parameter
present in the leading order term, which is not directly involved in
the limiting process, to vanish.
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Conclusions

The systems and their integrals arising from the more general
leading order structure presented here may demonstrate unusual
singular properties in the limit of vanishing magnetic field, as in
Example 1, and find applications in the fields of physics where
explicitly computable stable trajectories of particles in magnetic
fields are of relevance and interest, e.g. in plasma physics.
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Conclusions

The systems and their integrals arising from the more general
leading order structure presented here may demonstrate unusual
singular properties in the limit of vanishing magnetic field, as in
Example 1, and find applications in the fields of physics where
explicitly computable stable trajectories of particles in magnetic
fields are of relevance and interest, e.g. in plasma physics.

For physical applications, the results of Example 2 are of particular
interest. Our observation that the electron in helical undulator
placed in an infinite solenoid possesses a nontrivial algebra of
integrals of motion may help in theoretical study of its properties,
e.g., in allowing more efficient numerical simulations.
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