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We consider a family of Z, x Z,—symmetric Hamiltonian systems in two
degrees of freedom, i.e. invariant with respect to the reflectional
symmetries

01 (X17X2aP17P2) = (_X1=X27_P1-,P2)
02 (x1,%,p1,p2) = (x1,—x2, p1, —p2)

where (x, p) denote the canonical coordinates. We assume the system to
be close to an elliptic equilibrium at the origin and consider

H(x,p;e) = ZEZJHQJ-(X,p).
j=0

Here H,; are homogeneous polynomials of degree 2(j + 1) in the
coordinates (x, p), € is a small parameter and

w2

w1
Holx,p) = 203 +8) + 202+ )

2

so the system can be treated as a symmetric perturbed oscillator.
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The Hamiltonian

o0
w1 W ;
Ho= S0d+p) + S04 +p) + D ¥y

j=1
is in general not integrable. Let us introduce a detuning parameter ¢ by

assuming

wy = (g +€25)WQ, m,n €N

and put the term with the detuning into the perturbation, so to see the
system as a perturbation of a m:n resonant oscillator invariant under the
reflection symmetries.

Then we proceed to a normalization procedure w.r.t. the unperturbed

m:n resonant oscillator: we look for a (formal) coordinate transformation
that brings H into the normal form K so that after scaling t — “2t,

m n
{K,Ho} =0, Ho= E(Xf +p7) + §(X22 + p3).

In this way the system acquires a (formal) constant of motion Hy = 7.

A. Marchesiello Bifurcations of the detuned 2 : 4 resonance



The normalized system is therefore integrable.

Why the detuning? Because even if the unperturbed system is
non-resonant, the non-linear coupling between the degrees of freedom
induced by the perturbation determines a “passage through resonance”.
This in turn is responsible for the birth of new orbit families bifurcating
from the normal modes or from lower-order resonances. Moreover, in this
way we can avoid the presence of terms with small denominators while
normalizing the system.

We aim at a general understanding of the phase space structure and the
bifurcation sequences of periodic orbits in general position from the
normal modes, parametrised by the (generalized) energy E, the
detuning § and the independent coefficients characterising the nonlinear
perturbation.
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Typical periodic orbits associated to the 2:2 resonance

B

Rl

Figure: 2 : 2 resonance: loop orbits if 2(¢1 — ¢2) = £, inclined orbits if
@1 — ¢2 = 0, .

Here action-angle like variables have been introduced:

pj = \/277-J-sin¢j, Xj = \/277'J'C05¢j, Jj=12
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Typical periodic orbits associated to the 2:4 resonance

Wi

Figure: 2 : 4 resonance: anti-banana orbits if 2¢y — ¢» = 0,7, banana orbits:
4¢1 — 2¢2 = &+m.

Here action-angle like variables have been introduced:

pj = \/277-jsin¢j, Xj = \/277'J'C05¢j’ Jj=12
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As an example, let us consider the family of systems

H(x.p) = 2(5 + ) + V().

2
where
1 X2 2/2
V(x1,x) = 3(1+X12+q22> , 0<a<2,%<q§1.

This gravitational potential is generated by a simple but realistic matter
distribution. Its astrophysical relevance is based on its ability to describe
in a simple way the gross features of elliptical galaxies. In the limit a — 0
we have the logarithmic potential

X2
V(x1,%) = log <1+x12—|—q22>

The Hamiltonian is “prepared” for normalization by setting
w1 m
q = —_— = - + 625 )
w2 n
and scaling time and space variables as

62(,02

X = &x, t — t.

n
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Let us now consider in general

n

0 =
508 +03) + s (d +p)) + D eV Hy.

m
H = —(q+p}) + 5

2

j=1

The flow gof’" of the unperturbed system vyields the S'-action ¢/
on R* = C? given by

goHO : St x 2 — C2
4 (z1,22)) — (e*i’"ezl,e’i”ezz)

where
z; = x; +1iy;, j=12
or, equivalently, in action-angle like variables
zi = /21, j=1,2.

The perturbed Hamiltonian is in general not invariant under this action,
however we can normalize H so that the resulting normal form K does
have the oscillator symmetry, namely

(K, Ho} = 0.
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A set of generators of the Poisson algebra of ¢ —invariant functions is

given by
2121 2222
Tn o= — T2 = —F
1 2 ) 2 2
together with
Rez'z" Im z{'z)"
01 = —F——, 02 = —(——
2 2

and it is constrained by 71 > 0, 7 > 0 and the syzygy

R(r,0) = 2"™™2700n — (0% +03) = O.

The (truncated) normal form K is a polynomial in (7,0), namely

N-1
K = mm + nm +e2ndm + Z 521K2j(7') + ezNsz(T, o).
j=1

Without symmetries, the minimal truncation order is m + n — 2. With
both reflection symmetries, the minimal truncation order increases to
2N = 2(m+ n) — 2 and this is why one speaks of 2m:2n_resonance.
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The normalization allows us to reduce the dynamics to one degree of
freedom as the Poisson bracket on R* induced by (7, ) has two Casimir
elements, namely R and Hy = mmy + nm.

For a fixed value 1 > 0 of Hy we can eliminate 7, = %(n —11). The
dynamics are then constrained to the reduced phase space

v = {(71,01,02) eR3 R"(m,01,02) =0, 0 < 7q < 7]}
with Poisson structure
{f,g} = (VFfxVg,VR") |

where
R(m1,01,00) = 2" 2(n—m)"1{ — (01 + 03).

A. Marchesiello Bifurcations of the detuned 2 : 4 resonance



Let us focus now on the 2 : 4 resonance. The general structure of the
normal form, truncated at the minimal order reads

2 _ 2
K(1,0,8) = Ko(7) + *Ka(T;6) + &* u% + voroa + Ki(7;9)

with K3, K, polynomials of degree 2 and 4, respectively,
Ko=Hy = 1 +2m = n.

We assume at least one of the coefficients ;1 and v to be non-vanishing
(otherwise we have to consider higher order normal form).
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The Zy x Zy—symmetry of the original system is inherited by the normal
form.

Indeed, none of the invariants (7, o) changes under reflectional symmetry
with respect to the x;— axis. The reflectional symmetry with respect to
the x,— axis becomes the symmetry

(ry0) = (1,—0)

We perform a further reduction to explicitly divide out this symmetry, by
introducing variables

u = T
v = Yot
= 0102 .
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-010f

The (twice) reduced phase space is given by
P = {(u,v,w) eR?®: S (u,v,w)=0,0<u<n}

where )
SNu,v,w) = Mu“ - 2(v® +w?)
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The normal form then becomes (after neglecting constant terms and
scaling one more time by &2)

KM u,v,w;8) = (26 +an)u + M\® + &2 [uv +vw + KJ'(u;6)]

Note that, since the reduced phase space is a surface of revolution, by
rotation we can always eliminate one of the two variables v, w from the
Hamiltonian (we do not consider the case ;1 = v = 0 here).

For definiteness we assume from now on > 0 and v = 0.

Several parameters: 0, 7, the coefficients a, A, , ... And by varying the
parameters of course bifurcations might occur. .. How to describe the
dynamics in terms of all these parameters?

To understand the dynamics of the normal form we follow a geometric

approach: we look at the intersections between the level sets of the
Hamiltonian and the reduced phase space.

A. Marchesiello Bifurcations of the detuned 2 : 4 resonance



At first order the level sets determined by constant values of the normal
form

KIh) = {(u,v,w) eR®: (26+an)u+ > =h}

are generically double planes. Their intersections with the reduced phace
space correspond to stable singular equilibria or to periodic orbits.
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Here we depict only level sets of the normal form that do not degenerate
into a double plane (section w = 0). Their intersections with the reduced
phase space correspond to stable singular equilibria or to periodic orbits.

Singular equilibria are at the singular points of the reduced phase space,
namely at

Q; =(0,0,0) (cuspidal), and;Q, =(0,0,7) (conical).
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From the equations of motion

oKJ BK"
u=0, v—4wa—u‘s7 Ww=— 3u

we infer that the intersections between the level sets

KIh) = {(u,v,w)e R® K (u,v,w) = h}

and the reduced phase space are periodic orbits, except when K/(h) is a
double plane where the circle consists of equilibria. Since

oK}
—% = 25 + an + 2\
ou
the corresponding double root is given by
b= _254—0477
- 2\

and it gives a circle of eqilibria on the reduced phase space only if

0 < u < n.
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When we have a double plane, the circle of equilibria can fall on the
singular equilibria for
u=0, or wu=n
at ( )2
26 +an
h=hy: = ————.
0 4\

This gives the threshold values for 7 at

26
n=mny = —— at @ =(0,0)

«

and
20

=Mz = _(y+2/\
This requires 0ae < 0 and d(a + 2\) < 0, respectively, since 1 cannot be
negative.

at @ = (770)

What does it happen at 77 = 701 and 17 = 19> 7 We need to look at the
higher order terms.
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Let us look at the system near h = hg, i.e. we consider the level sets
Kg(’:o(k) = {(u,v,w) €eR® : K'u,v,w;d) = hy+ <’k }

which give a family of third order curves when intersecting with the
(u, v)—plane, with equation

1 A
v(u) = ; k — 6—2(u—uo)2 - K/(u;0)|

where
20 + an
22
The €2 in the denominator lets the parabolic part of the curve dominate

over the cubic part KZ’. Thus, we have to understand the intersections
between the parabola

upg =

v= {k — g(u— uo)Q}

and the reduced phase space section. Tangency points correspond to
regular equilibria.
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Figure: Possible configurations between the phase space section P7 N {w = 0}
and a second order approximation of the level sets of the Hamiltonian for
=025 a=-1, A=0.35 p=0.25 ¢=0.2 and n = 0.4 (left), n = 0.6
(right).

For values of k corresponding to the red curve we have a stable
equilibrium at the origin (left) or a stable equilibrium at the origin and a
periodic orbit around it (right). For values of k slightly different (gray
curves) we can have periodic orbits around the origin or no dynamics; in
the right figure we furthermore have periodic orbits around a regular
equilibrium.
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At (0,0) the reduced phase space section has a cuspidal singularity.

The equilibrium Q; = (0,0,0) can be unstable only if the parabola passes
through the origin (u, v) = (0,0) with vanishing first derivative. This
happens for

20 + «
V) = —= |22 4 Bosn 4+ yan?| = 0.
L g2
Since we are following a perturbative approach, we look for a solution of
this equation in the form of a power series in &.
We find just one solution, namely

n =1 = o1+ &N

where
20
N1 = ——,
«Q

acceptable for ae # 0 and dav < 0 (i.e. 7 not negative).
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For a # 0 and da < 0, at

n=mn

two families of periodic orbits namely banana and anti-banana orbits,
bifurcate for the two-degree-of-freedom system defined by the normal
form and up to second order terms in the perturbation this happens
simultaneously, at the same critical value of 7. Since @y is a cusp point
this has a geometric reason and in particular subsists through all orders of
the perturbation.

At Q; = (1,0,0) the reduced phase space has a conical singularity. In this
case, regular equilibria appear/disappear in two successive bifurcations.
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Figure: Possible tangencies between the parabola and the phase space section
P7TN{w = 0} in (2) for increasing values of 7 and fixed values § = —0.25,
u=0.25, A =0.1, « =1 and € = 0.3 of the detuning and the other
parameters. Two regular equilibria appear successively from the conical
singularity and subsequently disappear simultaneously on the singular
equilbrium at the origin. The equilibrium on the upper contour of the phase

space is unstable while the equilibrium on the lower contour is stable.



At Q; = (,0,0) the reduced phase space has a conical singularity.

The intersection of the reduced phase space P” with the (u, v)—-plane is
given by

¢l = P'n{w=0} = {(u,v)ER2 : v::t;(n—u)u270<u<77}

whence the slope of the two contour lines constituting the reduced phase
space section at (u,v) = (1,0) is F4n?. The corresponding equilibrium
can be unstable only if the slope of the parabola at (u, v) = (7, 0) takes
values in the interval (7%772, %172). Thus, to find the critical values for n
which correspond to stability/instability transitions of the equilibrium, we

need to solve
/ 7
= +— .
v'(n) 5

2
a+2\°

We arrive at the two solutions 7 = 12 + := g2 + 1+, No2 =

In this case two families of periodic orbits can appear, not together.
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Implications for the original system: what the equilibria for the reduced
system correspond to?

@ The singular equilibria Q; = (0,0,0) and Q, = (0,0, 7) correspond
to 11 = 0 and 11 = 7, respectively.

For the original system this are the normal modes
2 2 2 2
xX+pi=0, x3+p;, =1

and
X +pi =20, x5 +p; =0,
also called short and long axial orbits.

@ Tangencies on the lower contour of the reduced phase space are
banana orbits:

0 =01 —T1 27’2 COS(2¢)1 — ¢2)

@ Tangencies on the upper contour of the reduced phase space are
anti-banana orbits:

0 =0, =71V2msin(2¢1 — ¢»).
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@ banana and/or anti-banana orbits appear/disappear when the
corresponding threshold values for 7 are acceptable, i.e. not
negative. This is always associated with a stability/instability
transition of a normal mode. This gives conditions in terms of the
coefficients a;, A and the detuning d, namely

da <0, and d§(a+2X) <0

for the short and long axial orbit, respectively.
@ The difference between the threshold values is
428
=TT v

Therefore, the sign of u(c« + 2)\) determines the bifurcation order
from the long axis orbit.
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@ 77 is not a constant for the original system; nevertheless we can use it
to find threshold values for the bifurcations in terms of the
(generalized) energy E (that is conserved for the original system).

On the long axial orbit (71 =7, 72 = 0), the normal form reads as
K = n+ &Q2+ann + ...
By the scaling of time we have
%K+O(eﬁ) - H = E
and we can express the (generalized) energy in terms of 1 as

E = 022 [+ (5 +am)n +...

Substituting the threshold values for 1 we find the critical energy
threshold values that correspond to the bifurcations off/from the
long axial orbit.
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Coming back to the potential

1 2 p/2
V(x1,x) = a<1+x12+q22) , 0<a<2 3<g<l

relevant to galactic dynamics, concentrating on g > % i.e § >0, after
normalization we have (g = 1 + 26)

-2 1
2 <0, p=-—=(a>—4)<0, §(a+2)) <0, 6a>0.

A= —a =
4T g 32

Thus, bifurcations occur always from the long normal mode, with
bananas appearing at lower energies than anti-bananas (u(a + 2X) > 0).
The critical values of the energy that determine the bifurcations read as

c 16 1) , 8(41a—10) 1)?
T 22\ 2 3222 \Y 72
16 1 8(53a + 14) 1\°
E. = - i e 2 (P
2-a (q 2) T 3E o2y <q 2)
for the bifurcation of banana and anti-banana orbits, respectively.
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Conclusion and perspectives:

@ 3D problems: a geometric reduction is possible also for 3D systems
that are close to resonances. However, the outcome of the
normalization is in general a normal form possessing only one
additional integral, besides the Hamiltonian and therefore it is not
integrable. Sometimes a renormalization is possible...

@ Indefinite resonances: one could consider more general systems with
indefinite quadratic part, so that
1
HoZ 5(!7717‘1—!7127’2)7 my, my e N
These systems differ from the definite case in several features, even
if their analysis can be performed almost in the same way.

@ K. Efstathiou, H. Hassmann, A. Marchesiello, Bifurcations and
monodromy of the axially symmetric 1 : 1 : —2 resonance, Journal of
Geometry and Physics, 146, 103493 (2019).

A. Marchesiello Bifurcations of the detuned 2 : 4 resonance



Conclusion and perspectives:

@ 3D problems: a geometric reduction is possible also for 3D systems
that are close to resonances. However, the outcome of the
normalization is in general a normal form possessing only one
additional integral, besides the Hamiltonian and therefore it is not
integrable. Sometimes a renormalization is possible...

@ Indefinite resonances: one could consider more general systems with
indefinite quadratic part, so that

1
HoZ 5(!7717‘1—!7127’2)7 my, my e N

These systems differ from the definite case in several features, even
if their analysis can be performed almost in the same way.

@ K. Efstathiou, H. Hassmann, A. Marchesiello, Bifurcations and
monodromy of the axially symmetric 1 : 1 : —2 resonance, Journal of
Geometry and Physics, 146, 103493 (2019).

Thank you for your attention
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