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We consider the operators S;(q), for t = 0, 1, generated in L,[0, 7] by the
differential expression

—y"(x) + a(x)y(x) (1)
and the boundary conditions

y(m) =™y (0),  y'(m) =€"y(0) (2)

that is, periodic and antiperiodic boundary conditions, where q is the
trigonometric polynomial potential of the form

q(x) = g-me "™ + gue®™, m>1, (3)

(d—m@gm) € R and m € Z. Note that, in the case m = 1, potential (3)
can be considered as the optical potential

qg(x) = (1+2V)e® +(1-2V)e '?, V>0, (4)

with g_1 =1—-2V, g1 =142V, V > 0. In our work, we investigate the
case m = 1 for the optical potential (4).
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It was proved by Veliev [17, O.A. Veliev, 2013 (see Theorem 1 and (26))]
that, if ab = cd, where a, b, ¢, and d are arbitrary complex numbers, then
the Hill operators S(q) and S(p) generated in Ly(—o0, 00) by the
expression —y"' + q(x)y with the potentials g(x) = ae~'?* + be'?* and
p(x) = ce™>* 4+ de®*, have the same Hill discriminant, and hence the
same Bloch eigenvalues and spectrum. Therefore, the investigations of the
operators S;(q), for t = 0,1, can be reduced to the investigations of the
operators generated in L,[0, 7t] by the differential expression —y” + q(x)y
and the boundary conditions (2) with the potential

—i2mx + re/2mx

p(x) = re = 2rm cos(2mx), (5)

where
fm = \/q=mQm-
In particular, n = /q_1q1 = V1 —4V2,

(Yalova University)



It is well known that the spectra of the operators Sq (q) and S; (q) are
discrete and for large enough n, there are two periodic (if n is even) or
antiperiodic (if n is odd) eigenvalues (counted with multiplicity) in the
neighborhood of n?. See the basic and detailed classical results in the
works of Brown et al. [3, B.M. Brown, M.S.P. Eastham and K.M.
Schmidt, 2013], Levy and Keller [8, D.M. Levy and J.B. Keller, 1963],
Magnus, and Winkler [9, W. Magnus, and S. Winkler, 1969], Marchenko
[12, V. Marchenko, 1986] and references therein.
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Some physically interesting results have been obtained by considering the
optical potential (4). The detailed investigations of the periodic optical
potentials were illustrated on (4) in the papers [10, 11, K.G. Makris, R.
El-Ganainy, D.N. Christodoulides and Z.H. Musslimani, 2010, 2011]. For
the first time, the mathematical explanations of the nonreality of the
spectrum of the Hill operator S(q), generated in Ly(—00, 00) by the
differential expression —y”" + q(x)y with potential (4), for V > 0.5 and
finding the threshold 0.5 (the first critical point V;) were given by Makris
et al. [10, 11, K.G. Makris, R. El-Ganainy, D.N. Christodoulides and Z.H.
Musslimani, 2010, 2011]. Moreover, using numerical methods they
sketched the real and imaginary parts of the first two bands for V = 0.85.
Midya et al. [13, B. Midya, B. Roy and R. Roychoudhury, 2010] reduced
the operator S(q) to the Mathieu operator and using the tabular values,
they established that there is a second critical point V, ~ 0.888437 after
which no parts of the first and second bands remain real.
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Some of the most valuable results were given by Veliev [20, 21, O.A.
Veliev, 2018, 2020]. In [20, O.A. Veliev, 2018], he gave a complete
description, along with a mathematical proof, of the shape of the
spectrum of the Hill operator S(q) with potential (4), when V' changes
from 1/2 to v/5/2. Then, he extended his results for all V > 1/2 in [21,
O.A. Veliev, 2020].
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Note that, the trigonometric polynomial potential (3) is a PT-symmetric
potential if g_p, gm € R. For the properties of the general PT-symmetric
potentials, see [1, F. Bagarello, J.P. Gazeau, F.H. Szafraniec and M.
Znojil, 2015], [14, A. Mostafazadeh, 2010], [19, 22, O.A. Veliev, 2017,
2021] and references therein. Here, we only note that, the investigations of
PT-symmetric periodic potentials were initiated by Bender et al. [2, C.M.
Bender, G.V. Dunne and P.N. Meisinger, 1999].
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The eigenvalues of the operators So(0) and S1(0) are (2n)? and
(2n+1)2, for n € Z, respectively and all eigenvalues of So(0) and S;(0),
except 0, are double. The eigenvalues of Sy(q) and Si(q) are called the
periodic and antiperiodic eigenvalues and they are denoted by A,(q), for
neZ and u,(q), for n € Z — {0}, respectively.
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It is well known that (see [5, MSP Eastham, 1974], [9, W. Magnus and S.
Winkler, 1966], [12, V. Marchenko, 1986]), if ry, is a real nonzero number,
then all eigenvalues of the operator H;(ry,), generated in L]0, 7] by
expression —y”" + q(x)y and the boundary conditions (2) with

potential (5), are real, for all t € (—1,1], and the spectrum o (H(rp)) of
the Hill operator H(ry), generated in Ly(—o0, 00) by expression (1) with
potential (5), consists of the real intervals

Iroo =[holrm) p_y(rm)], To=[py(rm), Aci(rm)],
I3 o = [Apa(rm) o o(rm)]s Tai= [y o(rm) Ao (rm)], ..,

where Ag(rm), A—n(fm), Asn(rm), for n =1,2,... are the eigenvalues of
Ho(rm) and p_ (rm), iy, (rm), for n=1,2... are the eigenvalues of
Hi (rm) and the following inequalities hold:

Ao(rm) < p_y(rm) < py (rm) < Aa(rm) < Aga(rm) < p_y(rm)
< po(rm) < Aa(rm) < Agalrm) < ---
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The bands T'y, Ty, ... of the spectrum o (H(ry)) of H(ry,) are separated
by the gaps

Bri= (g (rm) g (rm))e B2 = (A (i), A (rm)),
D= (p_y(rm) Hyp(rm)), -

if and only if the eigenvalues at the endpoints of the intervals are simple.
In other notation, I', = {y,(t) : t € [0,1]}, where ,(t), 7,(t),... are
the eigenvalues of H;(ry), called as Bloch eigenvalues corresponding to
the quasimomentum t. The Bloch eigenvalue vy, (t), continuously depends
on t and y,(—t) = 7,(t). These statements continue to hold for S;(q)
and S(q) if g_mgm > 0.
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Obviously, A_,(rm) and Ayp(rm), for n=1,2,... are the (2n)th and
(2n + 1)th periodic eigenvalues; y_ () and p ,(rm), for n=1,2,...
are the (2n — 1)th and (2n)th antiperiodic eigenvalues, respectively.

If one of the numbers g_,, and g, is zero and the other is real in (3), then
all eigenvalues of the operator Sy(q), except 0, are double and they are
equal to (2n)?. This fact was proved for the first time in [6, M.G.
Gasymov, 1980]. This case was investigated also in [7, N.B. Kerimoyv,
2013], [15, C. Nur, 2021], [18, O.A. Veliev, 2015]. In [15, C. Nur, 2021],
we investigated the operators S;(q), for t = 0,1, with potential (3), when
the periodic and antiperiodic eigenvalues are real.

(Yalova University)



In this work, we give estimates for the eigenvalues of So(q) and S1(q),
when (g—mgm) € R. We even approximate complex eigenvalues by the
roots of some polynomials derived from some iteration formulas. Finally,
we give numerical examples with error analysis using Rouche’s theorem.
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It is well known that [16, J. Poschel and E. Trubowitz, 1987], [21, 22, O.
A. Veliev, 2020, 2021]

[Axn(q) = Axn(0)] < sup [p(x)| = 2|rm],
x€[0,7]

an(q) =1y, (0)] < sup [p(x)| = 2|rm],

x€[0,7]

forn=1,,2..., where A4,(0) = (2n)?, u,,(0) = (2n—1)? and
fm = \/G—mqm. Moreover, for n =0, |Ag(q)| < 2|rp| holds. Therefore,

we have
(2n)% = 2|rm| < |An] < (20)% + 2|1

and

[An— (2k)% > [(2n)% — (2k)?| = 2|rim| = 4|n — k|n + k| = 2|ri]
> 412n — 1| — 2|,

for n € Z and k # +n.
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In particular, if n =1, we have [A11] < 4+ 2|ry| and
At — (K] > [[Ast] — (2K)7] > 16 — [Asa| > 12— 2],
for k > 2. Besides, if |[n| > 2, we have [A,| > |A_2| > 16 — 2|r,| and
A = (2K)%| > [[A=2| = (2K)%| 2> [A—2| — 4 > 12— 2|rp],

for k # £n. The analogous inequalities can be written for the antiperiodic
eigenvalues from

(2n = 1)% = 2|rm| < [py,| < (20— 1)+ 2|1y, (6)

forn=1,2,....
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First, we consider the operator So(q) which is associated with the periodic
boundary conditions. From now on, when we use the notation A,, we
mean the (2n)th and (2n+ 1)th periodic eigenvalues A_, and A, for
n=1,2,.... We begin with the equations

(A = (2m)*)(¥n, ™) = (q¥n, ™), (7)
(A = (2n)*)(¥n, e™) = (q¥n, &™) (8)

which are obtained from

=¥ (%) +a()¥n(x) = AnEn(x),

i2nx i2nx

by multiplying both sides of the equality by e and e <™ respectively,
where ¥ (x) is the eigenfunction corresponding to the eigenvalue Ay.
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Iterating equation (7) k times for N = n, the way it was done in the
paper [4, N. Dernek and O.A. Veliev , 2005], we obtain

(An—(2n)2 =Y aj(An)) (Fn, ™) —

(ao +Z B, (An)) (Far7) = p, (1), ©)
where
R Y P ) B P e (e e )
BOD= L e ol
P = F e e ey
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/
Here, the sums are taken under the conditions n, = +m, Y} n; # 0, 2n for
i=1

I=1,2,...,k+ 1. Note that, for the trigonometric polynomial potential of
the form (3), we have g; = 0 for i # £m.
Similarly, iterating equation (8) k times for N = n, we obtain
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15;‘(%))(‘1’", &™) = oy (An), (10)
where
GO = T T s G )
) Gy Gny *** Gy G—2n—my—np—-—n,
O = L @t m) = Gl mt )]
pr(An) = Z s Gn> ~** Aoy G (¥, e_iz(n+n1+m+"k“)x)

n1,N2,.. Nit1 [A" - (2(’7 + nl))2] e [A” - (2(!7 +Aeee nk+1>):

I
Here, the sums are taken under the conditions nj = +m, Y} n; 20, —2n
i=1

forI=1,2,..., k+ 1.

]

(Yalova University)




Since the potential g is the trigonometric polynomial potential of the
form (3), we have the followings, after some calculations (see [15, C. Nur,
2021)):

w1 (An) = agi-1(An),  a3;(An) = agi(As) =0,
B () = ()*""B;(A), (11)

dm
forj=1,2,....
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In order to give the main results, we need the following lemma. Without
loss of generality, we assume that ¥, (x) is the normalized eigenfunction
corresponding to the eigenvalue A,.

Lemma

The statements

(a) limk—o oy (An) =0, limg—oo p5(An) =0,

(b) |un|? + |va|?> > 0, where u, = (¥,, e2™) and v, = (¥,, e~ "?™),
are valid in the following cases:

(i) if |n| = ‘\/1 —4V2) <3,forn>1and m=1,

(i) if |g—2| + |g2| <29/10, for n=1 and m = 2,

(i) if |g—m| + |gm| < 7/2, forn =1 and m > 3,

(iv) if|rm| <2s—1, forn>s,s=2,3,... and m > 2, where

f'm = v/9-mQm-
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Now, we consider the statements of Lemma 1 for the case n = O:

The statements (a) limy_.co 0, (Ao) = 0 and (b) |(¥o,1)| > 0 hold in the
following cases:

(i) if|g—2| + |q2| <2, for m=2,

(i) if |g—m| + |gm| <3, for m > 3.

Letting k tend to infinity in the equations (9) and (10), we obtain the
following results. First, we consider the case n > 2 for m = 1.
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Theorem

If |n| =|v1—4V?| <3 andn> 2, then A is an eigenvalue of Sy(q) i
and only if it is either the root of the equation

|

A= @nf = Y aac () - ()Y fus (=0 (12
k=1 1 k=2
or the root of
A= @nf = Y aaci () + (B Y fus (=0 (13
k=1 1 k=2

lying inside the circle C, := {A € C : |A — (2n)?| = 2|n1|} and each of the
series in these equations converges uniformly to an analytic function on
the disk D, :== {A € C: A — (2n)?| < 2|r1|}. Moreover, the roots

of (12) and (13) lying in D,, coincide with the (2n)th and (2n+ 1)th
periodic eigenvalues A_, and A, of 5.
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Now we consider the case n > 2 for m > 2.
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Theorem
Suppose that |r,| < 2s—1, forn>s, s =2,3,... and m > 2, where

'm = \/4—mQm-

(a) If m is even and n = m/2, then A is an eigenvalue of Sy(q) if and
only if it is either the root of the equation

A—(2n)2 = ry — ZMJ 1 (14)

or the root of
A— + m — Z Qoj— 1 (15)

(b) If n = m, then A is an eigenvalue of Sy(q) if and only if it is either the
root of

5 2r37 Fim? ad
A —(2n) —T—m—glxz‘—l()\) =0 (16)
J:

or the root of
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A—(2n)? — — 16n2 20621 1 (17)

(c) If n# mand n # m/2, then A is an eigenvalue of Sy(q) if and only if
it is either the root of

Dzjl ) - (Em) P () =0 (18)

dm j=1

or the root of
Zazj )+ (E)""y () =0 (19)

lying inside the circle C, := {A € C: A — (2n)?| = 2|ry|} and each of
the series in these equations converges uniformly to an analytic function
on the disk D, := {A € C: |A — (2n)?| < 2|ry]}.
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Now, for the case n =1 and m = 1 we have:
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Theorem

If|n| = |vV1—4V?| <3, then:

(a) the first periodic eigenvalues Ay and A_1 are the roots of the equation

rZA =
Z /\lXQkfl(/\> =0 (20)

A% — 4N —2rF — —
T7A—16

=2

lying in the disk Dy := {A € C : |A| < 2|n| 4+ 4} and the series

(0]
Y. ask—1(A) converges uniformly to an analytic function on the disk D;.
k=2

Moreover, (20) has exactly two roots (counting with multiplicities) inside
the circle C; := {A € C : |A| = 2|n |+ 4} and these roots coincide with
the first two eigenvalues Ag and A_1 of Sy.

(b) the third periodic eigenvalue A1 is the root of

2 (o)
4 —
A—4— kgzﬂQkfl()L) 0 (21)

lying in the disk D;.
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Moreover, (21) has exactly one root (counting with multiplicity) inside the
circle (; and this root coincide with the third eigenvalue A;1 of Sp.

Here we note that, the proof of (a) was given by Veliev [20, O.A. Veliev,
2018] for |r| < 2. Besides, he gave the spectral analysis of the operators
St(q), for t = 0,1, and S(q). We have derived the same equation by
another method of him. In our work, we have proved that the statements
in (a) are still true for || < 3.

Now, we have the following results for the case n =1 and m > 2 to
estimate the periodic eigenvalues A_; and A;.
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(@) If|g—2| + |g2] <29/10, for n =1 and m = 2, then A is an eigenvalue
of So(q) if and only if it is either the root of the equation

)\—4—r2—20c2j_1()\):0 (22)
j=1
or the root of .
A—4d+ 1 — Zagj_l()t) =0, (23)
j=1

(b) If|g—m|+ |gm| <7/2, for n =1 and m > 3, then A is a double
eigenvalue of So(q) if and only if it is the double root of the equation

(A—4— iazj_l()\))2:0 (24)

lying inside the circle C; := {A € C: |A| < 2|ry| + 4} and the series

Y. a2j—1(A) converges uniformly to an analytic function on the disk
=1
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Dy :={A € C:|A| <2|rp| + 4} in each case.

Finally, in order to estimate the first periodic eigenvalue Ay for m > 2, we
consider the case n =0 and m > 2. By Lemma 2, we have:

Theorem

(@) If |g—2| +|q2| <2, forn =0 and m=2,
(b) If |g—m| + |gm| < 3, forn =0 and m > 3,
then A is an eigenvalue of Sy(q) if and only if it is the root of the equation

A — i 0621;1(/\) =0 (25)
Jj=1

lying inside the circle Co := {A € C: |A| < 2|rm|} and the series

J:
Dy :={A e C:|A| <2|rml|}.
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In order to estimate eigenvalues numerically, we take finite summations
instead of the infinite series in the equations (12)-(25). When we say the

k
(2k — 1)th approximations, we mean the equations containing ). asj—1(A)
j=1

k 00 00
and Y B,; ;(A) instead of ¥ azj—1(A) and ¥ B,; ;(A). For instance, in
j=1 j=1 j=1
the case m = 2, the (2k — 1)th approximations of the above equations are

k
A=Y i 1(A) =0, (26)
j=1
for n=0;
k
)L—4—I’2—ZIXQJ;1()L) :0, (27)
j=1
k
/\—4—|—r2—2042j_1(/\) =0, (28)
j=1

(Yalova University)



for n=1; and

2!‘22 r22 k

/\— 16— T - m —J;Dézj_l()t) — 0,
r22 k

A=16— = —J;zxgj_l()t) =0

for n = 2.
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In particular, we obtain practical equations to calculate the small
eigenvalues for the case m = 1, namely for the optical potential. If we
consider the (2k — 1)th approximation

A2—4A—2r12—

_ 16 - Z/\DQJ 1 =0 (31)

for the first periodic eigenvalues Ag and A_1, the (2k — 1)th approximation

k
— Z 0621;1(/\) =0 (32)
j=2
for the third periodic eigenvalue A4j, and the (2k — 1)th approximation
k q—l n k
"L aWECE) Ly =0 (39
j=1 =2

for the other eigenvalues A_, and A, of Ly,
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then we have the following estimates for the remaining terms:

9
|J ;HAQJ 1 )tl ‘< 312 104)
and
a-1 = ) ﬁ i k
\J ;HAzJ 1(An) £ (== 0 ) 1:21 Byj-1(An)|< (50"

for || < 3 and n > 1. Obviously, we will have better approximations as k
grows. Besides, for a fixed k, this method gives better approximations as n
grows.
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Now, we approach the eigenvalues by the roots of the polynomials derived
from the (2k — 1)th approximations (31), (32), and (33), the way it was

done by Veliev in [20, O.A. Veliev, 2018]. For example, for m=1, n=1
and k = 3, we have the fifth approximations

A c*A

A) =A% — 40 —2c% — —

Q(A) © T AC16 (A—16)2(A—36)
B c®A _ c®A 0
(A —16)2(A —36)2(A —64) (A —16)3(A—36)2

and
C2 C4
(A)i=A—4— —
Q-1(4) A—16 (A —16)2(A —36)
C6 C6

- 0.

T (A—16)2(A —36)2(A—64) (A—16)3(A—36)2
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Then,
Pi(A) := (A —16)3(A —36)%(A — 64)Q1(A)

and
P_1(A):= (A —16)*(A —36)*(A — 64)Q_1(A) (34)

are polynomials of degree 8 and 7, respectively. By the same token, we
can derive polynomials to approximate the periodic eigenvalues, for n > 2.
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Similarly, for n = 0 and m = 2, the fifth approximation is

2!’22 2!’24
Ko(A) := A — —
o(Y) A—16 (A —16)2(A —64)
. 2/’26 . 2/’26 —0
(A—16)2(A — 64)2(A — 144) (A —16)3(A —64)2
for n =1 and m = 2, the fifth approximations are
2 4
p) r
Ka(A):=A—4 — —
1(A) TR 36 T (A—36)2(A —100)
_ I’26 . I’26 —0
(A —36)2(A —100)2(A —196) (A —36)3(A —100)2
and
2 4
rn rn
Ki(AD):==A—4—n — —
1(A) 7N 736 (A—36)2(A —100)
6 6
rn rn

_ _ 5 =0,

(A —36)2(A —100)2(A —196) (A — 36)3(A — 100)
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for n =2 and m = 2, the fifth approximations are

K o(A):=A—16— 0t c
2V A A—64 (A—64)2(A—144)
B r26 B I’26 0
(A —64)2(A —144)2(A —256) (A —64)3(A —144)2 7
and
2 4
rn rn
K =A—-16— —
2A)i=A =167 (A —64)2(\ — 144)
o " 0.

T (A= 64)2(A —144)2(A —256) (A —64)3(A —144)7
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Then, the corresponding polynomials are

Ro(A) := (A —16)3(A — 64)% (A — 144) Ko (M), (35)
R 1(A) := (A —36)*(A —100)*(A — 196)K_1(A), (36)
Ri(A) := (A —36)%(A — 100)(A — 196) Ky (M), (37)
R2(A) := (A —64)*(A — 144)%(A — 256)K_5(A) (38)
and
Ry(A) := (A —64)3(A — 144)% (A — 256) Ko (A), (39)

respectively. By the same token, we can derive polynomials to approximate
other periodic eigenvalues, as well.
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Now, we state the analogous theorems to Theorem 3 and Theorem 5 for
the operator S;(q) associated with the antiperiodic boundary conditions.

Theorem

(a) If|n| = |V1—4V?| <3 and n> 3, then y is an eigenvalue of Sy if
and only if it is either the root of the equation

w—(2n—1)2 Za2jl (q’l)"’”zisz(y):o (40)

a1 j=2
or the root of
1/2 &
“l/[ 2n— ]. 2321 1 (qqll n szl =0 (41)
j=2

lying inside the circle c, := {p € C: |u — (2n — 1)?| = 2|n |},
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. — Gn19n, "~ qnj9—ny—np—---—n;
aj(p) = nl,n; o= n—n) =12 [u—2(n—n —- —nj) — 1)

..... j

. — AnAn, ** - Gn;Q2n—1—n1—ny—---—n;
bj(y) B n1,n;.,nj [V - (2(’7 - nl) - 1)2] cee [‘u — (Z(n —ny — - — nj) _ 1)2

and each of the series in these equations converges uniformly to an
analytic function on the disk d, := {p € C: |u — (2n — 1)?| < 2|n|}.
Moreover, the roots of (40) and (41) lying in d,, coincide with the
eigenvalues ¢ and p_  of 5.

(b) In the case n = 2, the statements in (a) are valid for || < 2.
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Now, for n = 1, we have:

Theorem

If |[n| < 2, then u is an eigenvalue of Sy if and only if it is either the root
of the equation

p—1l—a—=3) ay 1(p)=0 (42)

j=1

or the root of -
]1—14-2—282]',1(]4):0 (43)

j=1

lying inside the circle ¢ := {u € C: |u| = 2|n| + 1} and each of the
series in these equations converges uniformly to an analytic function on
the disk di := {pu € C : |u| < 2|n|+ 1}. Moreover, the roots of (42)
and (43) lying in dy, coincide with the first antiperiodic eigenvalues p_

and y_ ;.
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Now, let us approach the antiperiodic eigenvalues by the polynomials
derived from the (2k — 1)th approximations of (40)-(43). For n =1,
k=3, and j =1,2, we have

, 2 A
Al = e e T e 2s)
C6 C6
T (=) (—49) (=9 (25
Then,
Si() == (u—9)*(u — 25)*(u — 49) H; (n) (44)

is a polynomial of degree 7. By the same token, we can derive polynomials
to approximate the antiperiodic eigenvalues, for n > 2.
Now, we present a numerical example for the case m = 1:
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Example

For k=3 and r} =1—4V? = —2.157281295, Veliev [20, O.A. Veliev,
2018] approximated the first periodic eigenvalues Ag and A_; for the
optical potential g (x) = (1 +2V) e + (1 —2V) e "?X. Now, we have
the following approximations for the third periodic eigenvalue A1 and the
first antiperiodic eigenvalues p_; and u_ ;:

First, we show that A is the real eigenvalue lying inside the circle

C={AcC:|A—41814942277| = 1.7 x 107 °}.

The root of the polynomial P_;(A) defined by (34), lying in the disk

Dy ={A € C:|A| <2|n|+4}, is pr = 4.1814942277. The other roots
of P_1(A) are pp = 15.8535021182,

p3 = (15.9823184944 — 0.119095369803/),

ps = (15.9823184944 + 0.119095369803/),

ps = (36.000183379 — 0.00333664975667/),

pe = (36.000183379 + 0.00333664975667/) and p; = 63.9999999074.
Using the decomposition
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_A=p)A=p)---(A—pr)
Q-1(A) = (A_16)3(A—36)2(A—647) '

we obtain by direct calculation |Q_1(A)| > 1.8496 x 1077, for all A € C.
On the other hand, again by direct calculations, we have

Y |aok—1(A)] < 1.8269 x 1077, for all A € C. Therefore, by Rouche's
k=4

theorem, equation (21) has only one root inside the circle C. Thus, using
Theorem 5 (b) and the spectral analysis of Sy given by Veliev [20, O.A.
Veliev, 2018], we conclude that A; is the real eigenvalue lying inside the
circle C.

Now, we show that p_; and p, are the complex eigenvalues lying inside
the circles

51 ={p € C:|u— (126575008922 — 1.52020432568)| = 1.4 x 10’5}
and
Jy ={p € C: |u— (126575008922 + 1.52020432568/)| = 1.4 x 10_5},

respectively.
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The roots of the polynomials S; (i) and Sy(u) defined by (44), lying in
the disk di = {u € C: |u| < 2|c| + 1} are

x1 = (1.26575008922 + 1.52020432568/) and

y1 = (1.26575008922 — 1.52020432568/), respectively. The other roots of
S1(1) are xo = (8.96777697119 -+ 0.142338162679i),

x3 = (8.79563202223 — 0.0317230792875/),

x4 = (8.97007606112 — 0.162097407292/),

x5 = (25.0005579806 — 0.00577397577187/),

x¢ = (25.0002071021 + 0.00582061314113/) and

x7 = (48.9999997735 — 0.00000000692262634543/) and the other roots of
So(p) are yr» = (8.96777697119 — 0.142338162679i),

y3 = (8.79563202223 + 0.0317230792875/),

ya = (8.97007606112 + 0.162097407292/),

ys = (25.0005579806 + 0.005773975771871),

¥6 = (25.0002071021 — 0.00582061314113/) and

y7 = (48.9999997735 + 0.00000000692262634543/).
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Using the decompositions

(h=—x)(p—x) - (p—x1)
(#—9)3(p —25)2(n — 49)

Hi(p) =

and

(=) (p—y2) - (h—y7)
(4 —9)3(n—25)2(n —49) ’

by direct calculations, we obtain |Hy(p)| > 4.6113 x 10~°, for all u € 6,
and |Ho(p)| > 4.6113 x 1079, for all y € &;. On the other hand, one can

easily calculate that Y |aok_1(A)| < 4.4786 x 1070, for all u € 61 U 6.
k=4

Hy(u) =

The proof follows from Rouche’s theorem and Theorem 9; each of the
equations (37) and (38) has only one root inside the circle d, and d1,
respectively and p_; and p_; are the complex eigenvalues lying inside J;
and J, respectively.
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Now, we present another numerical example.

Example

Consider the potential g(x) = e/** — e~ = 2jsin(4x) or

p(x) = ie"®* + ie=™ = 2jcos(4x). In thiscase, m=2,n=+/-1=
and we have the following approximations for the first periodic eigenvalues
}\o, }\_1, )\+1, )\_2 and }\2:

First, we show that Ag is the eigenvalue lying inside the circle

co:={A€C:|A—0.125867010858| = 4.8 x 1010},

The root of the polynomial Ry(A) defined by (35), lying in the disk

Dy = {A € C: |A| <2|n|}, is a3 = 0.125867010858. The other roots of
Ro(A) are ap = 15.8939999572,

a3 = (15.9900597315 — 0.0204223963085/),

as = (15.9900597315 + 0.0204223963085/),

as = (64.0000067845 — 0.000336043226373/) ,

as = (64.0000067845 + 0.000336043226373/) and a; = 144.0. Using the
decomposition
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()\— 31)()\—32) ()\—37)
(A —16)3(A — 64)2(A — 144)’
we obtain by direct calculation |Ky(A)| > 4.4990 x 10719, for all A € .
On the other hand, again by direct calculations, we have

Y Jagj—1(A)] < 2.6416 x 10710, for all A € ¢. Therefore, by Rouche's
j=4

Ko(A) =

theorem, equation (32) has only one root inside the circle ¢y. Thus, using
Theorem 7 (a), we conclude that Ag is the eigenvalue lying inside the
circle ¢.

Now, we show that A_; and A; are the complex eigenvalues lying inside
the circles

c1:={A€C:|A— (40312397462 — 1.00097772667/)| = 8.8 x 10712},

and

c1:={A € C:|A— (4.0312397462 + 1.00097772667/)| = 8.8 x 10~ *?}.

respectively.
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The roots of the polynomials R_1(A) and Ry (A) defined by (36)
and (37), lying in the disk Dy = {A € C: |A| < 4+2|n|} are
x1 = (4.0312397462 — 1.00097772667/) and
= (4.0312397462 4 1.000977726671), respectively. The other roots of
M) are x, = (35.9964522039 + 0.0176168557191),
(35.9964154572 — 0.0172437280769/),
= (35.9758900488 + 0.00060462552073/),
= (
= (

S

x5 = (100.00000187 + 0.0001147372723481),
x¢ = (100.000000674 — 0.000114763768311/),
x7 = (196.0 + 1.20513462491e — 13/) and the other roots of Ry(A) are
y» = (35.9964522039 — 0.0176168557191/),
v = (35.9964154572 + 0.0172437280769/),
= (35.9758900488 — 0.00060462552073/),
y5 — (100.00000187 — 0.0001147372723481),
= (100.000000674 + 0.000114763768311/) and
y; = (196.0 — 1.20513462491e — 13/).
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Using the decompositions

A=x1)(A—x2) - (A= x7)
(X —36)3(A — 100)2(A — 196)’

Koi(A) =

e (A=) =) (A1)
(A —36)3(A — 100)2(A — 196)’

by direct calculations, we obtain |K_1(A)| > 3.5600 x 1012, for all
A € c_1and |K1(A)] > 3.5600 x 1072, for all A € ¢;. On the other

hand, one can easily calculate that Y |as;—1(A)| < 2.0038 x 1012, for
j=4

all A € c_1 Ucy. The proof follows from Rouche’s theorem and

Theorem 6 (a); each of the equations (22) and (23) has only one root

inside the circle c_; and ¢y, respectively and A_; and A1 are the complex

eigenvalues lying inside c_; and ¢y, respectively.

Ki(A) =
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Using the equations (38) and (39), Theorem 4 (b) and the estimations
|K_2(A)| > 3.7055 x 1077, for all A € c_5; |Ka(A)] > 2.3100 x 1072, for

all A € ¢ and ¥ |agj—1(A)] < 1.1464 x 107, for all A € c_» U ¢y, one
=4

can show in a similar way that A_» and A, are the eigenvalues lying inside
the circles

cp:={A€C:|A— 158949584087 = 1.9 x 10~°}.

and
c:={A e C:|A—16.0208389883| = 1.9 x 1078}.

respectively.
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