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1. Exactly solvable potentials in general

Why are they important...  especially if they are complex?
How are they generated?

Variable transformation z(z): Schrédinger eq. = diff. eq. of special function F(z)

SUSYQM: Known solvable potential a = new solvable potentials

How are they classified?

Using the special function F'(z), the variable transformation z(x) and SUSYQM

2. Natanzon potentials: the (confluent) hypergeometric differen-
tial equation

Adaptating the techniques 2 F(a, b; ¢; z) and 1 Fi(a; c; 2)

Bound states Jacobi and generalized Laguerre polynomials

Shape invariance

3. Beyond the Natanzon class: the Heun type differential equa-
tions

The sextic oscillator: introduced as QES potential

The rationally extended harmonic oscillator: SUSY partner of the HO



1. Exactly solvable potentials in general

Milestones of generating solvable potentials

1940:
1951:
1962:
1971:
1981:

Factorization method Schrodinger
Systematic application of the factorization method Infeld and Hull
A variable transformation method Bhattacharjie and Sudarshan
Systematic application of the transformation method Natanzon
SUSYQM: a reformulation of the factorization method Witten

Note the periodicity of ~ 11 years



Other examples for phenomena with ~ 11 year periodic activity maxima

The Sun



Other examples for phenomena with ~ 11 year periodic activity maxima

The Sun

The Soviet/Russian army

1945 Berlin
1956 Budapest
1968 Prague
1979 Kabul
1991 Moscow
2000 Grozny
2014  Crimea
2022




The world map of solvable potentials

Any more continents or islands?



The main territories in the map

o F1: Natanzon class, solved by 5 F) in general, by P,ga’m(z) for bound states
11 Natanzon confluent class, solved by | Fy in general, by L{®(2) for bound states
Shape-invariant: Natanzon (confluent) subclass, closed under a SUSY transformation

Yo F) and X Fi: solutions in terms of the linear combination of several
(confluent) hypergeometric functions
Non-SI SUSY partners of Natanzon (confluent) potentials

Potentials solved by exceptional orthogonal polynomials, a new type of SI

Solutions containing both independent solutions gen. Woods—Saxon
J,: potentials solved by Bessel functions

YaP: Quasi-exactly solvable potentials: exact solutions up to a finite n



The variable transformation method

Bhattacharjie and Sudarshan 1962

Schrodinger eq. = differential equation of special function F

S (E—V(@)(x) =0  insert  o(x) = f(z)F(z(z))

dax?

and compare with

B-v=2 3 (”) + (0 (Risto)) — 3292~ 202(ato))

27/ (x) 4\ Z(x) 2 dz 4
Schwartzian derivatve terms E and the main potential terms
Connection  to 1 2(z)
/
SUSYQM: W(z) = —5QE@)= (@) + 5553



The solutions are

o) ~ @ Hewn (5 [ Qo)is) Plato))

The yet unknown z(x) can be obtained from a differential equation

by direct integration
/¢1/2(z)dz =C"V2q 4.

~: integration constant, coordinate shift
This is to generate a constant term on the r.h.s. of £ — V(z) = ...

The special function F' and the variable transformation z(z) determines everything

Note: sometimes only z(z) can be determined == implicit potentials



2. Natanzon potentials: the (confluent) hypergeometric differen-
tial equation

Natanzon-class potentials Natanzon 1971
Employ the method to the hypergeometric function o Fi(a, b; ¢; z)
Or the confluent hypergeometric function 1 Fi(a, c; z)

For bound states these functions reduce to orthogonal polynomials:

2Fi(a,b;c; z) = P@9)(1 — 2z) for a=-n or b=-n

Jacobi polynomial

VFi(a,¢; 2) = L9(z) for a=-n
Generalized Laguerre polynomial
In what follows we employ Jacobi polynomials

They can be adapted better to P7-symmetric QM:

Their argument exhibits P7 symmetry



Apply the method to the Jacobi polynomials: F(z) = P9 (z)

E-V(z) = N(x)>2+ (@) <n+a+ﬂ> <n+o‘;ﬂ+1>

e () ()

The solutions are

() ~ (/@) (14 2(2) 7 (1= 2(2)F PP (2(2)) .

NI

The yet unknown z(x) can be obtained from a differential equation

2 pi(1—22)+pu+piuiz

(3_2)2¢(Z) = (%) (1—22)2 =C.

by direct integration
/gf)m(z)dz = CYV% 4 e .

€: integration constant, coordinate shift



Separating the constant F term, the potential is

2 (g 2z 2
V(e) = ~5g + 5 (53) + 3G 5101 = 2@) + s+ sura(a)]

The solutions are

Slisy

(1= 2(2)) 2 P (2(2)) -

n

w=(a+0)/2and p = (o = §)/2
Solving the problem: chose p; = get z(x) = express E,, = get V()

Y(@) ~ [p(z(x))]T(1 + 2(x))

About the origin of the parameters:
s;: from the parameters of the polynomial o and 3

pi: (including also C' and €) from the variable transformation function z(z)



What about the role of SUSYQM?

New potentials are generated from old ones

The solutions of the new potentials are obtained from those of the old ones:
viw) = (=4 W(a)) o)
T\ de -

If ¢»_(x) contains P{*?)(z(x)) then ...
.., (7) contains P{®%(z(x)) AND P\ (z(x))
...80 it is a linear combination of several Jacobi polynomials

BUT sometimes recursion relations help to restore the original structure

Shape-invariant potentials: they correspond to simple choice of z(z), i.e. p;



The list of (real) shape-invariant potentials (a =1, C' = +£1)

(2")? = V(zx) T € Name
(Class)
C(1-2?) (B? A)sech®(z) + B(2A + 1)sech(z) tanh(z) (—o0,00) ScarfII
(PI) (B2 + A2 + A)cosechQ(x) B(2A + 1)cosech(z) coth(x) [0,00) gen. Pdschl-Teller
(B2 4+ A% — A)cosec?(az) — B(2A — 1)cosec(z) cot(x) [0, 7] Scarf 1
A(A — 1) sec?(z) + B(B — 1)cosec?(x) [0,7/2]  Poschl-Teller I
—A(A 4+ 1)sech?(x) + B(B — 1)cosech®(x) [0,00) Péschl-Teller 11
C(1—2%)?% —A(A+ 1)sech?(x) + 2B tanh(z) (—o00,00) Rosen—Morse 11
(PII) A(A — 1)cosech?(x) — 2B coth(z) [0,00)  Eckart
A(A + 1)cosec?(x) — 2B cot(z) [0, 7] Rosen—Morse I
Cz swiz? 4+ l(l+1) —(+3)w [0,00)  3d harmonic oscillator
(LT)
C ﬁ - = —|— l(l+1) [0,00)  Coulomb
(LII)
C2? A% — B(2A + 1) exp(—z) + B? exp(—2z) (—o0,00)  Morse
(LIIT)
C —tw+ tw?a? (—o00,00) 1d harmonic oscillator
(1)

Obtained by selecting certain single terms on the right handside of E —
V(z)=...



Constructing more general Natanzon-class potentials

Select certain combinations on the right handside of £ — V (z

)= ..

(2")? = z(x) F(z) T € Name Ref.

C(1—2%)2271 implicit P,g,a’ﬂ)(z) (—00,00)  sym. Ginocchio  Ginocchio 1984

C(1 — 22)2z1 implicit P\ (2) [0, 00) PIII Lévai 1991

C(z+6) implicit qua)(z) [0, 00) gen. Coulomb  Lévai et al. 1993, 1998
C(1—22)(1 — 2)z1 implicit P\ (2) [0, 00) WRL95 Williams et al. 1995

confined  WRL95
C(1 — 22)2z2 explicit P{*"(z) (—00,00) DKV (PIV)

C(1— 22)2(z + 7)? implicit P\ (2) [0, 00) WL03

C(1—222(64+1—2)"' implicit P"P(2) (—00,00) LI12

Williams et al. 1995

Dutt et al. 1995

Williams et al. 2003

Lévai 2012

Most of these potentials are weakly singular at the finite boundaries



3. Potentials beyond the Natanzon class and the Heun type
differential equations

Example 1: the sextic oscillator as a QES potential Turbiner, Ushveridze
2s —1/2)(2s — 3/2
Vir)= 2s—1/ )g s =3/ )—|—(b2—4a(s—i—M+1/2))r2+2abr4+a2r2
r
Solutions: P
Y(r) = Cr¥ 2 exp <—% — %) P (r?) .

Py(r?): M’th order polynomial
Its coefficients are determined by a three-term recurrence relation. . .
... which is terminated by a specific choice of the parameters
This restricts the generality of the potential
The general potential is solved in terms of an infinite power series.

There are infinite number of physical solutions, of which the first M/ +1 can be obtained,
hence QES.

The energy eigenvaues are obtained by solving an algebraic equation of order M + 1.



Example 2: the rationally extended harmonic oscilator potential

Solved by the X type exceptional Laguerre polynomials Gomez-Ullate et al. 2010
L&) =—(a+1+ 2L, (2) + L, (2).
They satisfy a differential equation similar to generalized Laguerre polynomials
They form an orthogonal basis, but start with degree v =n+1> 0
Linear combinations of two generalized Laguerre polynomials
The potential: Quesne 2008, Bagchi et al. 2009

. w? I(1+1)
V(T’) = ZTQ + ’]“2

4w 8w(2l + 1)

T (20 + 1 +wr?)?

Bound-state eigenfunctions:

1+1 W2 )
S (14d) W
exp(—ZTQ)LnJrf (ETQ) )

- A r
nl; — Ln
Vallir) = Crgr e

Energy eigenvalues:

3



This potential is related to the harmonic oscillator potential by SUSYQM

It is shape-invariant

Take the harmonic oscillator potential and a SUSY transformation with

2
x(r) = exp(Zr?) (p+ wr?)

and factorization energy

€= —w(l—i—g) < ES7 .

V. (z) becomes the rationally extended harmonic oscillator potential

The two spectra are identical: broken SUSY



Alternative approach to these beyond-Natanzon potentials in terms of Heun-

type equations

These differential equations and their solutions are more general

The potentials contain more parameters and more (4) terms
They contain the (confluent) hypergeometric case, i.e. the Natanzon potentials

Problem: they are much less elaboreted mathematically

Type Q(2) R(z) exp (3 7 Q(2)d2)

Heun zjal + zjag + Zfll3 (zfal)(azﬁfa;%(zfzm) (Z - al)W/Q(Z - a2)6/2(z - a3)e/2
Confluent Heun dp+ 71+ zil 4(’;6:1; + 2 272z —1)%/% exp(2p2)
Bi-confluent Heun T+d4ez a—1 272 exp (62/2 + €22 /4)

Doubly confluent Heun ;12 +214+1 -5 22 exp (—6/(22) + 2/2)

Triple confluent Heun vz + 22 az —q exp (y2%/4 + 2%/6)
Hypergeometric S+ 7‘”2270 (zafl) - %b 2¢/2(z — 1)(atbt1=c)/2

(CH)

Confluent hypergeometric g -1 -2 2212 exp(—2/2)

(CH, BCH, DCH)




Apply the method to the bi-confluent Heun equation

2z 3 (@)
E-Vi) = 22/ (x) 4 <z’(x)>
(36030 D):
e 0% e de e

*(“‘5‘2‘5)‘52—14

Define z with )
dz
(£) atn-c,

where .

O(2(x)) =p122(w) +p22(1x) + p3 + paz(x) +p5z2(x) .

Then the pre-factor of the solutions is
o
F(2) ~ 84 (2(2)) ((2)) /2 exp <§z(x) T 1)

The potential is

2(<)> i<j<(§>)>2+¢><zc<x>> [2) (@)

V() = —

1
+ So—— + S3 + S42

(z) + s52°(z) | .



The parameters and F are related by

E
E +'y(5
8 J— _ —_— pu—
2 p?c q 92 9
E 5% e
33—p36+<a—§—z—3> —0,
E e
s — 2 2
4 p4C 9 )
E € 0
sy —ps—= ——=0.
5 p5c 1
Now take the following substitutions: pp=1 p;=0,1#2
Then D(z) =1/z — 2(r) = —%a?
Take also vy =2s § = —4b/C e = —16a/C? o =16aM C =4
Then
25 —1/2)(2s — 3/2
Vi(z) = (25 -1/ )g s =3/ )+(b2—4a(3+M—i—1/2))x2+2abr4+a23:2

x
E = 4bs — 4q

Polynomial solution of the bi-confluent Heun equation.
Ishkhanyan, Lévai Phys. Scr. 95 (2020) 085202



Apply the method to the confluent Heun equation

a? 20—a7+5v 200 — 20 — ad — 6
< Z+ 2(z(z) — 1)
v, —5) )

422() 4(z(x) — 1)

Define z with

where

$(2(x)) = pra*(z) (2(2) = 1)*+p22(2) (2(x) —1)*+ps2*(2) (2(x) — 1) +pa(2(z) = 1) +p52*(2) -

Then the pre-factor of the solutions is

fx) ~ ¢ exp (%z(x)) (2(2)) 0~ V/2 (2(z) — 1)6-D/2

The potential is




The parameters and F are related by

E o
81—p15—zzoa

F « 1)
Sg—pga—i‘a—g—f‘%zo,

E ad o
Sg—pga‘i‘aﬂ—g—?—?_o,

E



Now take the following substitutions: pp=1 p;=0,1#2
Then H(2) = 2(z =12 — z(r) = =52
Take also f=—N y=a+1 §=-2 0=(2—N)a
C=-2w/2 a=1+1/2 s,=1

Then
2,0 l+1) 4w 8w(2l+ 1)

V(z) = ot + -
r)=—x —
4 x? w2 +21+1  (wz2+20+1)2°

This is a polynomial solution of the confluent Heun equation.

The CHE reduces to that of the X; type exceptional Laguerre polynomials

141
‘ g9172) :

bl I

Un(e) ~ o PTG

Potentials related to the X type exceptional Jacobi polynomials also follow from the
CHE



Discussion
Variable transforations and SUSYQM help a lot to find solvable potetials

They also help in the classification of solvable potentials

Natanzon-class potentials: F(z) is the (confluent) hypergeometric funcion
— Bound states are described by classical orthogonal polynomials
Potentials beyond the Natanzon class?
— They have been found using different methods
QES
Exceptional orthogonal polynomials
They can be discussed in a united for in terms of Heun-type equations
— Polynomial solutions of the CHE: rationally extended harmonic oscillator
— Polynomial solutions of the CHE: rationally extended Scarf II potential (not shown)
— Polynomial solutions of the BHE: sextic oscillator
The solutions arise as the combination of two ordinary polynomials (recursion!)

This paves the way to SUSYQM: polynomial + its derivative

Natanzon-clss potentials included as special cases



The world map of solvable potentials revisited

We found the legendary islands



