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Quantum time-dependent two-state problem

EZ

Laser field

U(t), 5,() 0,(t) = @y — 0, (1)
E1

Theory of non-adiabatic transitions in quantum mechanics
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C. Zener, “Non-adiabatic crossing of energy levels”, Proc. Roy. Soc. A 137, 696 (1932).

Non-adiabaticity is due to level-crossing: 0,(t=1,)=0 < w,(t,)) = o,

Mathematically, this is because of a singularity of the governing equations 2



Shortcut to the Schrodinger equation

* Consider the constant-amplitude field configuration: U(z)=U,=const
a2zz o igzaZZz + UgaZ — O

e Transform the dependent variable: @, = @(z)y(2)

v, + 2%—1’52 t//z+[¢;z—i5z%+U§Jw:O

« With 2¢_ /@ =i0, we remove the first-derivative term and
obtain the Schrodinger equation

v..+(E-V(2)y=0

D)
V(iz)=—"F2—]*%
(2) 4 2

* The potential V(z) 1s complex — non-Hermitian Hamiltonian

The two-state problem presents an example of non-Hermitian evolution



Theorem: Class property of solvable models

2
d % 4| s L 9 U0, =0 ()
dt U ) dt

Physics equations are usually solved by reducing them to known mathematical equations

Transformation of dependent and independent variables
a, =p(z)u(z), z=2z(1)

However, in this case the transformation of the independent variable z(7) is not needed !

Theorem: Let a; (z) solves the equation a’z“zz 4 [ s 52* Y z ] a; LU a’z" =4
for some functions (U"(2), . (2)) 4

Then, a,(t)=a,(z(t)) solves (1) for the field configuration
* dZ * dZ
Ut)=U — o()=0_(z)—
(¢) (Z)dt (t)=0_( )a’t

A .M. Ishkhanyan, J. Phys. A 33, 5539 (2000).

The transformation of the independent variable is not needed at all !
It can be incorporated afterwards 4



General reduction procedure

* Rewrite two-state equation for a variable z and functions U | 5:

%

+ —z§Z—UZ a, +U"a, =0

*

a

2zz *

e Transform only the dependent variable: @, = ¢(z)u(z)

o285 Yoy o Cey| s Ve | 2y,
¢ U @ U)o

» Target equation (with rational coefficients):
.+ f(2)u, +g(z)u=0

Singularities of this equation: z,, z,, z5,..., z

0

m

* Theonly possible p=(z-z)"(z-2,)" ... (z—2z,)"

substitution . 5
U =Uy(z—2)"(z—2,)" ... (z—z,)"
k, all are integers or half-integers " _ 4 ) O
" ) =——+ +..+
z—z Z-2 z—2z,

A. Ishkhanyan and V. Krainov, Eur. Phys. J. Plus 131, 342 (2016).

The function 7" /7" must have the same finite singularities as the target equation 5



Classical confluent-hypergeometric models

* Kummer equation:  u__ + [ Z_ J U, — Lu=0
Z Z
 Three classes of solvable models:
U. dz U, dz « dz
U)==2= U@n=-L= U®O=Uy—
() . df (¢) \/; s 0 dt
O, dz
e For all three: 0,(t) = [—1+ 52J -
7 dt

A .M. Ishkhanyan, J. Phys. A 33, 5539-5546 (2000).

The first Nikitin model: U=U,, J,=6,+d,¢' ===  Morse potential
E.E.Nikitin, Opt. Spectroscopy 6, 431-433 (1962); Discuss.Faraday Soc. 33, 14-21 (1962).

Landau-Zener model: U=U,, 6, =6t+6,/t ====) Harmonic oscillator

t
L.D. Landau, Phys. Z. Sowjetunion 2, 46-51 (1932); C. Zener, Proc. R. Soc. London, Ser. A
137, 696-702 (1932).

The second (standard) Nikitin model: U=U,, 0, =0;+0,/! wmms) Coulomb
E.E. Nikitin and S.Ya. Umanski, Theory of Slow Atomic Collisions, Springer, Berlin, 1984.

Three independent confluent-hypergeometric classes 6



Classical ordinary-hypergeometric models

Gauss ordinary-hypergeometric equation:

u,, + L 0 u, + ap u=20
z z-1 z(z—1)

Two classes of solvable models:

*

U; dz U, dz

v z dt 2 z(z—1) dt
For both of them: 5.(t) = 2 4 0, |dz
z z-1) dt

A.M. Ishkhanyan, J. Phys. A 33, 5539-5546 (2000).

The first Demkov-Kunike model DK1 ===  Péschl-Teller potential

The second Demkov-Kunike model DK2 ===  Eckart potential

1. Yu.N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim. 16, 39 (1969).
2. K.A. Suominen, B.M. Garraway, Phys. Rev. A 45, 374 (1992).

Two independent ordinary-hypergeometric classes



The two Demkov-Kunike models

DK DK2
U(t)=U,sech(t/7) U(t)=U,
5, (t)= 3, +0, tanh(t/ 7) 5,(t) =6, + 6, tanh(t / 7)

1. Yu.N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim. 16, 39 (1969).
2. K.A. Suominen, B.M. Garraway, Phys. Rev. A 45, 374 (1992).

The solution of the two-state problem for these models is written in
terms of ordinary Gauss hypergeometric functions ,f(a,b;c; z)

The second Demkov-Kunike model is unique.
Its symmetric version belongs to both ordinary-hypergeometric classes.



The general Heun equation

Equations of the Heun class

2
+(]/1+5Z+€Z)Z +(az—q,)u=0

(po+ D2+ p,2° + pyz )

P(z) = p3 - (z—-z;)(z2=2,)(z2— 23)

Z_)Slz+SO — })3(2):1'2(2_1)(2_61)

1. General Heun equation

2 _
d-u du (7. o L€ ja’qu affz—q L0
dz? \z z-1 z-a)dz z(z-1)(z-a)
0 1 a o
Riemann P-symbol: 0 0 1) a =z




The four confluent Heun equations

2. Single-confluent Heun equation
d’u 5 d

-|— ]/ + + & “ + @z q
dz* dz z(z— 1)

z z—1

3. Double-Confluent Heun equation

2 —
‘ I;Jr(y +5+5jdu+az T4=0

2 2
dZ zZ 4 dZ z

4. Bi-Confluent Heun equation

2 —
a”;‘+(7+5+82jdu+az T0=0

dz z dz z

5. Tri-Confluent Heun equation

2
d—+(7+5z+gz )@+(az q)u=0
dz* dz

The most singular (and hence the most complicated)
are the double- and tri-confluent Heun equations

10



Reduction to the general Heun equation

« Rewrite the two-state equation for a variable z and functions [/ , 0

. U.
azzz+[—z5z— U] a22+U2a2 =0

* Transform only the dependent variable: a, = @ (Z ) u (Z )

u,, + 2&—1'52*—Ufk u, + Ve —i5;—Ui P U | u
@ U @ U)o

* The general Heun equation:
o) £ affz —
U, + A + u, + pz=4q u=>0
z z—-1 z-—a z(z—1)(z—a)

There are 35 generator functions {U - 52*}

Hence, 35 classes of general Heun models {U (2),0, (t)}
A .M. Ishkhanyan, T.A. Shahverdyan, T.A. Ishkhanyan, Eur. Phys. J. D 69, 10 (2015)

0

*

z

Only 11 classes are independent

11



Solutions of the general Heun equation in terms of ;F),

 If y=—N and accessory parameter g satisfies a certain polynomial equation,
the solution of the general Heun equation 1s written in terms of a single
generalized hypergeometric function £, .

 The simplest non-trivial case is ¥ = —1 and
q>+q(as+e-1-a)+aaf =0
* Checking the thirty-five general Heun classes of the two-state models, we find

that the only class for which these equations are unconditionally satisfied is the
class defined by the triad

(k ,kz,k3) — (1, _1,_1)
* Corresponding /aser-field configuration is given as

U,z d
- 0 Z 5; (t) :( 52 - 53 jdz
(z—-1)(z—a) dt z—1 z—a)dt

U(t)

This is the only family that is exactly solvable in terms of a
finite sum of the Gauss hypergeometric functions ,F,

12



A new time-dependent two-state 2F1 model

AO _Al

A

U@)=U,=const 0 (t)=A,+

z (t ) obeys the algebraic equation (z— al) _ ot
Z —_—

For this a=-2 we have a cubic algebraic equation 1n z, which 1s resolved as

2/3
z=-1+ 1 2/3+(€t/2r+\/1+€t/r) , ze(l,+0)
(et/2’+\/1+et/f)

The detuning varies over the time non-symmetrically, while the DK2 model 1s
anti-symmetric if A, +A, =0

z=1+ et/ra a=0 - original DK2 model (solution in terms of /)
z=+1+€’", a=-1 - afirstmodification of DK2 model (solution in terms of ; /%)

T.A. Shahverdyan, T.A. Ishkhanyan, A.M. Ishkhanyan, J. Contemp. Phys. 56, 291-296 (2021) 13



Asymptotes at infinity: — 0O

Left asymptote of z(1): Z‘ ~1+ (1 _ a)a o/

[—>—00

Left quasi-energy states: a, L_)_OO

14



Asymptotes at infinity: - o0

23

Right asymptote of z(1): z‘ ~el-a + (1 + a)

[—>+00

2 |t—>+oo

Right quasi-energy states:

: A A
- el/lRt/T, ﬂ/R — | i

15



Solution of the two-state problem
in terms of the Clausen function

, U
A fundamental solution to equation a,, + [ —l5t — UtJ a,, + U2a2 =0
: _ A LA A
for field configuration Ur)=U,, o@)=A+

Z

(Z—Cl) :e—t/z'

z—1

is explicitly written in terms of a Clausen function ;F, as

asp =C(Z—1)O[2 (Z—Cl)a3 3F2[a,ﬂ,1—%;5,—a'8;2_1]
q g a—1

This is for the case when the system starts from the first quasi-energy state

The general solution involves two ;F, functions, each of which can be
presented as an irreducible liner combination of two ,F, functions

16



Non-transition probability

The first Demkov-Kunike model:

sinh (ﬂzT(Ee —E_ + 2b)j sinh (ﬂzT(Ea —E, + 2b))
P -
R sinh (7¢E, )sinh (7 TE, )

K.A. Suominen, B.M. Garraway, Phys. Rev. A 45, 374 (1992).

Our result:
sinhLZT(RL +(a-1R, —R)J sinh(ﬂ;(RL +(a—1)Ry + R)J
P, —
e sinh (z7R, )sinh ((a —1)z7Ry)

R, =JA2+4U2  R=\J(A,+(a—-1DA,)’ +4a°U} Ry =+/A +4U2

This formula is a main new result 17



A nice plot

Transition probability versus the asymmetry parameter a

U,=0.35, is the original DK2 model, Ay =—1, A} =1

* a=0is the original DK2 model

* The new model is more effective at weak fields

For a<0, this non-symmetric configuration is more effective than the DK2 18



A periodic level-crossing two-state model

* A general-Heun periodic level-crossing model (1,0,0) :
(1-a)A,
l+a—2+Ja cos(A(t —to))

U(t)=U, =const, o(t))=A+

* With 4= il +1 , an exactly solvable periodic level-crossing 2F1 sub-model:
e
o) el
Ui)y=U,, o,(t)=A - o+ 3
A=A -

 Explicit solution of the two-state problem : \\Vf/ﬁ wf/ \\\ f/
A+R |
|

e [(R—l)(A1—1)+2(R+A1)] v

|

* where z() = At i)

A -1

G. Saget et al., J. Contemp. Physics (Armenian Ac. Sci.) 52, 324-334 (2017).

This is a member of GHE class (1,0,0) 19



Reduction to the confluent Heun equation

dz* z z-—1

 There are 15 classes of confluent Heun models (only 9 are independent)
A.M. Ishkhanyan and A.E. Grigoryan, J. Phys. A 47, 465205 (2014).

d’ 5 d —
* The confluent Heun equation: au + 4 + +& ! + 9z 4 u=>0
dz z(z-1)

* Ik ky dz UL,
U(t)=Uyz" (z-1) v o .
0,(t) =| 0y + 1 + Z 2r e

(1) (0 Z Z_Jdt E

* Lambert-W model: & , =—1,1 e
A, —A u1f

S, =N, +—L X yal

t R % (et/Z') 7 = WeW N Sk

T.A. Ishkhanyan, J. Contemp. Physics (Armenian Ac. Sci.) 54, 17-26 (2019).

The solution involves irreducible linear combinations of two F, functions 20



Reduction to the biconfluent Heun equation

2
* The bi-confluent Heun equation: M + (Z +0 + gzjdu + @z qu =

dz* z dz 7

e There are 5 classes of biconfluent Heun models kA =-1,—-1/2,0,1/2,1

0

* dZ
U@)=U.z" =
(1) =U, 7

0,(t)= (i+ Oy + 522j%
7 dt

* Inverse-square-root model: k =1
U(t)=U,

A

Ji

T.A. Ishkhanyan, A.V. Papoyan, A.M. Ishkhanyan, C. Leroy, Las. Phys. Lett. 17, 106001 (2020)

5t(t) — AO +

The solution involves irreducible linear combinations of two Hermite functions 21



Discussion_1

Re-examining the analytic solutions of some classical problems. This time, the
quantum time-dependent two-state problem.

The quantum two-state problem is an interesting object, important in the theory
of non-adiabatic transitions in quantum mechanics, in atomic, molecular and

optical physics, in laser physics, etc.

This 1s a slightly more difficult problem than the Schrodinger equation. In a
sense, it is between the Schrodinger equation and the Dirac equation (although
closer to the Schrodinger equation).

Analytic solutions to the two-state problem are rare. In the past, they were
constructed by reducing the problem to the ordinary- or confluent-hypergeometric
equations.

There are only five classical exactly solvable models: two ordinary- and three
confluent-hypergeometric models. These models resemble the famous five
classical Schrodinger potentials.

Conclusion: To construct more analytic models, one should appeal to advanced
equations that have more singular points. The five Hein equations are just that.

22



Discussion_2

Reduction of the quantum time-dependent two-state problem to the Heun equations
Four new exactly solvable models are constructed:

- Generalized DK2 model (general-Heun, 6-parametric)

- Periodic level-crossing model (general-Heun, 4-parametric)

- Lambert-W model (confluent-Heun, 5-parametric)

- Inverse-square-root model (biconfluent-Heun, S-parametric)

Note: all five classical hypergeometric models are 5-parametric.
The generalized DK2 model is unique since it has an additional parameter as compared
with the classical models. This parameter defines the asymmetry of the resonance crossing.
The generalized DK2 model 1s a constant-amplitude level-crossing field configuration for
which the detuning varies asymmetrically in time over a finite interval.
For all the above models, the general solution of the problem is written in terms of
fundamental solutions, each of which is an irreducible linear combination of two functions
of the hypergeometric class.
We have calculated the non-transition probability for generalized DK2 model and have seen
that the formula has much in common with that for the original DK2 model.
It turns out that for relatively weak fields, the transition induced by this non-symmetric
configuration is more effective than that by DK2.
A general conjecture 1s that the non-symmetric models may suggest more effective tools.



Future directions

- The Dirac equation

- The Klein-Gordon equation

- The mass-dependent Schrodinger equation
- The surface plasmon-polariton equation

- Other non-relativistic and relativistic equations ...
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