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Auxiliary: Thomson problem (1904)

. electrons on sphere

Electrons localized at xq, ..., Xn.
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Auxiliary: Thomson problem (1904)

. electrons on sphere

Electrons localized at xq, ..., Xn.
@ The electrostatic interaction energy between a pair of electrons of equal charges

2
€

U=k—, ri=x-x|, xecS.
fi
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Auxiliary: Thomson problem (1904)

. electrons on sphere

Electrons localized at xq, ..., Xn.
@ The electrostatic interaction energy between a pair of electrons of equal charges
2

€ 2
UZk?’ I’,'/'=|X,'—Xj|, Xx; € §°.
Ul

@ The total electrostatic potential energy of each N-electron (k = e = 1)

U(N):Z%.

i<j
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Formulation of problem. |

Determine the minimum potential energy configuration of N electrons constrained to
the surface of a unit sphere that repel each other with a force given by Coulomb’s law.
Find a configuration of electrons for which

U(N):Zrlij.

i<j

assumes minimum.
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Generalized Thomson model

Consider a continuous function f : [0,4) — [0, c0). Given a finite subset C of
points residing on the unit sphere S? define the potential energy of C to be

Y fxi—xP). (1)

XX €C, i
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Generalized Thomson model

Consider a continuous function f : [0,4) — [0, c0). Given a finite subset C of
points residing on the unit sphere S? define the potential energy of C to be

Y fxi—xP). (1)

XX €C, i

Completely monotonic function
f is completely monotonic if

(-1 (x)>0,vxel, Yk>0.

If the above inequality is strict the function is completely strictly monotonic.
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Generalized Thomson model

Consider a continuous function f : [0,4) — [0, c0). Given a finite subset C of
points residing on the unit sphere S? define the potential energy of C to be

Y fxi—xP). (1)

XX €C, i

Completely monotonic function

f is completely monotonic if

(-1 (x)>0,vxel, Yk>0.

If the above inequality is strict the function is completely strictly monotonic.

Cohn — Kumar Theorem

If f strictly completely monotonic, then (1) achieves unique minimum for C
determining the sharp configuration.
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Sharp agreement

Consider N points {x;}"Y, placed on a unit sphere S2. They are said to form
an M-spherical design if for any polynomial function S? > x — p(x) of total
degree at most M its mean over {x;} coincides with the mean over the sphere,
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Sharp agreement

Consider N points {x;}"Y, placed on a unit sphere S2. They are said to form
an M-spherical design if for any polynomial function S? > x — p(x) of total
degree at most M its mean over {x;} coincides with the mean over the sphere,

N
[ p(ax— x > Pl

Suppose further that m denotes the number of the different values of inner
product between the points, then {x; {‘i 1 is called a sharp configuration if it is
2m — 1 spherical design.
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Sharp agreement
Rigorously identified sharp configurations. |

@ N = 2, the optimal configuration consists of electrons at antipodal points.
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Sharp agreement
Rigorously identified sharp configurations. |

@ N = 2, the optimal configuration consists of electrons at antipodal points.

@ N = 3, electrons reside at the vertices of an equilateral triangle about a
great circle.
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@ N = 2, the optimal configuration consists of electrons at antipodal points.

@ N = 3, electrons reside at the vertices of an equilateral triangle about a
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@ N = 4, electrons reside at the vertices of a regular tetrahedron.
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Sharp agreement

Rigorously identified sharp configurations.

@ N = 2, the optimal configuration consists of electrons at antipodal points.

@ N = 3, electrons reside at the vertices of an equilateral triangle about a
great circle.

@ N = 4, electrons reside at the vertices of a regular tetrahedron.

@ N =5, a mathematically rigorous computer-aided solution was reported in
2010 with electrons residing at vertices of a triangular dipyramid.
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Sharp agreement

Rigorously identified sharp configurations.

@ N = 2, the optimal configuration consists of electrons at antipodal points.

@ N = 3, electrons reside at the vertices of an equilateral triangle about a
great circle.

@ N = 4, electrons reside at the vertices of a regular tetrahedron.

@ N =5, a mathematically rigorous computer-aided solution was reported in
2010 with electrons residing at vertices of a triangular dipyramid.

@ N = 6, electrons reside at vertices of a regular octahedron.
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Rigorously identified sharp configurations.

@ N = 2, the optimal configuration consists of electrons at antipodal points.

@ N = 3, electrons reside at the vertices of an equilateral triangle about a
great circle.

@ N = 4, electrons reside at the vertices of a regular tetrahedron.

@ N =5, a mathematically rigorous computer-aided solution was reported in
2010 with electrons residing at vertices of a triangular dipyramid.

@ N = 6, electrons reside at vertices of a regular octahedron.
@ N = 12, electrons reside at the vertices of a regular icosahedron.
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Sharp agreement

Rigorously identified sharp configurations.

@ N = 2, the optimal configuration consists of electrons at antipodal points.

@ N = 3, electrons reside at the vertices of an equilateral triangle about a
great circle.

@ N = 4, electrons reside at the vertices of a regular tetrahedron.

@ N =5, a mathematically rigorous computer-aided solution was reported in
2010 with electrons residing at vertices of a triangular dipyramid.

@ N = 6, electrons reside at vertices of a regular octahedron.
@ N =12, electrons reside at the vertices of a regular icosahedron.

7th Smale’s problem.

For the remaining N the problem is still open.
Thomson problem belongs to the Smale’s problems list of eighteen unsolved
problems in mathematics (proposed by Steve Smale in 1998).
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Thomson problem - known solutions

Configuration for N = 2,3,4,5
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Thomson problem solutions vs Platonic solids

Platonic solid - regular, convex polyhedron, constructed by congruent
(identical in shape and size) regular (all angles equal and all sides equal)
polygonal faces with the same number of faces meeting at each vertex. Five
solids meet these criteria:
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Thomson problem solutions vs Platonic solids

Platonic solid - regular, convex polyhedron, constructed by congruent
(identical in shape and size) regular (all angles equal and all sides equal)
polygonal faces with the same number of faces meeting at each vertex. Five
solids meet these criteria:

source: Wikipedia 1. Tetrahedron - Four faces (N=4)
2. Cube - Six faces (N=8)

3. Octahedron - Eight faces (N=6)

4. Dodecahedron - Twelve faces (N=20)

5. Icosahedron Twenty faces (N=12)
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Thomson problem versus Platonic solids

N=46,12

Geometric solutions of the Thomson problem for N = 4,6, 12 electrons are
known as Platonic solids whose faces are all congruent equilateral triangles.
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Thomson problem versus Platonic solids

N=46,12

Geometric solutions of the Thomson problem for N = 4,6, 12 electrons are
known as Platonic solids whose faces are all congruent equilateral triangles.

source: Wikipedia

N=8,N =20

Numerical solutions of Thomson problem for N = 8,20 are not the regular convex polyhedral
configurations of the remaining two Platonic solids, whose faces are square and pentagonal,
respectively.
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Star shaped wire in R3

Formulation of problem: attractive star in R®. N- number of arms,

L- length of each arm, « - coupling constant.

Nc

F=T{uUlaU..UlpN.

Hamiltonian

Hor="—-A+ad(x-T)".
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Self-adjoint realization of H, r

What is Hamiltonian with the star shape potential?
Operator

Hor="—-A+ad(x—T)".
is defined as a self-adjoint extension of
—A|Cg°(R3\r) .

Hor="—A+adé(x—T)" is defined by means of the boundary conditions on
r. )

Attractivity of the potential

Two dimensional system with one point interaction i, 1 = —4e?(=2ma+¥(1),

)
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Boundary conditions, definition of Hamiltonian

Given f € W22(R®\ I') we pick a point s € I'; and its neighborhood (in the plane perp.
to I'; at s) U; of s disjoint with ' \ T'; and consider the restriction f [y, which is locally (in
U;) a distribution. Assume that

=(1)(s) 1=~ lim - f1u(s).

Qf)(s) = lim [F1u(s) + =(O(s)In]

exist almost everywhere in (0, L) forany i=1,...,n.
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Boundary conditions, definition of Hamiltonian

Given f € W22(R®\ I') we pick a point s € I'; and its neighborhood (in the plane perp.
to I'; at s) U; of s disjoint with ' \ T'; and consider the restriction f [y, which is locally (in
U;) a distribution. Assume that

=(1)(s) 1=~ lim - f1u(s).

Qf)(s) = lim [F1u(s) + =(O(s)In]

exist almost everywhere in (0, L) forany i=1,...,n.
Impose

2ra=(f) = Q(f), (4)
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Boundary conditions, definition of Hamiltonian

Given f € I/Vlif(]R3 \ ') we pick a point s € I'; and its neighborhood (in the plane perp.
to I'; at s) U; of s disjoint with ' \ T'; and consider the restriction f [y, which is locally (in
U;) a distribution. Assume that

=(1)(s) 1=~ lim - f1u(s).

Qf)(s) = lim [F1u(s) + =(O(s)In]

exist almost everywhere in (0, L) forany i=1,...,n.
Impose

2ra=(f) = Q(f), (4)

Horf(x) = —Af(x), x e R3\T.
D(Ha,) == {f € WZER3\ T) N L*(R%) : f satisfies (4)}

loc
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Spectral stage

Sylwia Kondej (Inst. Phy: m wires: spectral properties AAMP




Spectral stage

discrete spectrum (??) essential spectrum
—o0 - f ]

0]
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Spectral stage

discrete spectrum (??) essential spectrum
—0 -0 f ]

0]

Analogy to well potential

For attractive interaction the ground state energy goes down if the attractive
components approach and goes up if the attractive components go away.
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Spectral stage

Question 1.

discrete spectrum (??) essential spectrum
—o -0 f !

0]

Analogy to well potential

For attractive interaction the ground state energy goes down if the attractive
components approach and goes up if the attractive components go away.

Question 2. Main question:

For which configuration of arms the ground state energy is maximal?
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Does the discrete spectrum always exists for the star

shape potential?

Two dimensional model: There exists always non empty discrete
spectrum provided potential is attractive

y

P. Exner, V. Lotoreichik; 2018

The maximum the ground state energy is (uniquely) achieved for the regular
polygon with angle 27.
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Existence of discrete spectrum, cont.
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Existence of discrete spectrum, cont.

Three dimensional model; existence

Th. [PExner, SK, 2019] If L > 27 ¢>™*~%() then

Odisc 7é @7

wherell— (1) ~ 0.577.

Sylwia Kondej (Inst. Phys. UZ) Quantum wires: spectral properties



Existence of discrete spectrum, cont.

Three dimensional model; existence
Th. [PExner, SK, 2019] If L > 27 ¢>™*~%() then

Odisc 7é @,

wherell— (1) ~ 0.577.

Three dimensional model; non existence
Th. [P.Exner, SK, 2019] If

1L
No-Ing+Co<a, (5)

where Co = >~ (351In ¢j| + C1). Then

Odisc = @ . (6)
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Existence of discrete spectrum, cont.

Three dimensional model; existence
Th. [PExner, SK, 2019] If L > 27 ¢>™*~%() then

Odisc 7é @,

wherell— (1) ~ 0.577.

Three dimensional model; non existence
Th. [P.Exner, SK, 2019] If

1L
No-Ing+Co<a, (5)

where Co = >~ (351In ¢j| + C1). Then

Odisc = @ . (6)

In particular, if the star in too small/weak then (6) holds.
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Optimization: Solution

Theorem. P. Exner, SK, 2019

Assume that N € {2, 3,4,6,12}. The lowest energy of I:Ia,r assumes the
unique maximum for I realizing the following configurations

N = 2 antipodal points,

N = 3 simplex with inner product —1/2,

N = 4 tetrahedron,

N = 6 octahedron,

N = 12 icosahedron,

Denote the above configuration as ¥.
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Birman Schwinger principle poles of the resovent

Sylwia Kondej (Inst. Phys. UZ) Quantum wires: spectral properties AAMP 17/27



Birman Schwinger principle poles of the resovent

Ror(2) = R(2) —Rr(2)(a — Qur) 'Rr(2), z=—#°

Resolvent J
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Birman Schwinger principle poles of the resovent

Resolvent

Ror(2) = R(2) —Rr(2)(a — Qur) 'Rr(2), z=—#°

Birman-Schwinger principle

Rephrasing the investigation of gaisc(Ha,r) as analysis of the operator Q.. r can be
expressed concisely as

feker(a— Qur) © Hargs = —K°g. where g, = G, % f.
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Ideas of proofs.

We investigate ker(a — Qx.r) . The operator-valued matrix

N
Qe = [-’—,’Z,r];\f/':1 J @LZ([O’ L) ®)

i=1

T/ -+ [2(]0, L]) — L*([0, L]) are integral operators with the kernels

{ Tast(IFi = Tj2) := Gu(ITi(s) = Ti(t)])  if i#] o
G (T(s) — (1)) it =
where

Guxxy= L (10)

47 |x — x|
and G;¥ is the regularized kernel with the logarithmic singularity removed.
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Ideas of proofs, cont.

We investigate
ker(a — Qx,r)

—x? corresponds to the eigenvalue of H, r
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Ideas of proofs, cont.

We investigate
ker(a — Qx,r)

—x? corresponds to the eigenvalue of H, r
(f, Tief) = (f, Ti=f)

and, by Cohn — Kumar theorem:

> Tast(lFi = FiF) = > Tas(|Zi - 5if).

i:j i i:j i
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Ideas of proofs, cont.

We investigate
ker(a — Qx,r)

—x? corresponds to the eigenvalue of H, r
(f, Tief) = (f, Ti=f)

and, by Cohn — Kumar theorem:

> Tast(lFi = FiF) = > Tas(|Zi - 5if).

i,ji#] i,j i#]
Find the configuration of {I'y, ..., Ty} such that

sup Qur

assumes minimum.
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Ideas of proofs, cont.

A
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Ideas of proofs, cont.

A

sup Qn,r 2 (On,l—-ﬂ ?)

N
> 3 / Test((IF) = TIE)A(8)A(t)dsdt + S (F, Th )
ijizy’ EXL =1
- p— N "
> 3 / Tuse((51 — SR)AS)H(Ddsdt + 3 (F, Ti 1)
ijizj Y LxL i=1
= NRupQ.sx.
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Icosahedral packings in virus shells

Source: Wikipedia

Source:

Sylwia Kondej (Inst. Phys. UZ) Quantum wires: spectral properties AAMP 21/27



Small angle asymptotics
o
’_ZWL

I

r(s) =(s,0,0) : R > R3, Ty(s)=(scosh,ssinf,L): R—R3,

Point interaction in 2D

hog = 0P £ 6,(x —a), hao=—-AC) +5,(x—a)+du(x —b)
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Spectrum of h, 1 and h, »

% R one point interaction

Hon
e N two points interaction

H a2

o1 = —4el(=2matv(1))

Essential spectrum of double line (parallel lines)
e For # = 0 we have

Jess(HO,a) = [Ha,27 OO) o

Essential spectrum of double line (non parallel lines)
e For 6 > 0 we have

Oess(Hp,a) = [fta,1,00), Ha2 < [ha,1
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Properties of discrete spectrum

Discrete spectrum J

e For 0 > 0 there exists discrete spectrum in (uq.2, fa,1) -

Theorem, SK’22
The function 6 — inf o(Hjp ) is increasing.

o It achieves maximum for 6 = 7,
e It achieves minimum for 6 = 0.
o The whole discrete spectrum is contained in (pq2 , fa,1) -

w pushing down the spectrum
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Counting function asymptotics

Theorem, SK’22

For 6 — 0 the number of discrete spectrum points behaves as

N=000").
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Counting function asymptotics

Theorem, SK’22

For 6 — 0 the number of discrete spectrum points behaves as

N=000").

We investigate ker(a — Q. r) . The operator-valued matrix

O T’] r]l/ 1) @Lz([o I—]) (11)

i=1

T/ [3(R) — L2(R) are integral operators with the kernels

{ Do := Gu(|li(s) = Ti(1)]) if i#j

(12)
GeE(Mi(s) — () if i=j

IFi(s) — T(t)] = /82 + 12 + L2 — 2st cos .
We have

106 s = /}M |Gi(ITi(8) = Tj(D)[* dsdt = O(6 ) .
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Bounds for the counting functions of H, 4
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Bounds for the counting functions of H, 4
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Bounds for the counting functions of H, 4

Upper bound J

foess(Ha,0) < const + const - ||D9||f_,s = 0(9_1).
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Bounds for the counting functions of H, 4

Upper bound

foess(Ha,g) < const + const - ||D9||,2_,S = 0(9_1).

Lower bound
Construction of N = [6~"] functions ¢

(Ha,00x, &2) — 111,0(dx, 02) <0
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Thank you for your attention
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