

Seminář

11. července 2019, 10:00, zasedací místnost ÚJF

Pionless EFT theory revealing the onset of ΛΛ hypernuclear binding

Ing. Martin Schäfer (Oddělení teoretické fyziky, ÚJF AV ČR, v. v. i.)

The highly topical issue of the lightest $\Lambda\Lambda$ hypernucleus remains still unresolved mainly due to the lack of $\Lambda\Lambda$ scattering data as well as limited data on $\Lambda\Lambda$ hypernuclear systems. Valuable information on the $\Lambda\Lambda$ interaction has been provided recently by the analyses of $\Lambda\Lambda$ correlations in relativistic heavy ion collisions, which put further experimental constraints on $\Lambda\Lambda$ scattering length.

Pionless EFT theory, widely applied by the team of prof. Barnea (the Hebrew University), represents a very convenient tool with minimal set of low energy constants. They are fitted to available data, taking into account both experimental as well as theoretical uncertainties.

Binding energies of light, A \leq 6, $\Lambda\Lambda$ hypernuclei are calculated using the Stochastic Variational Method.

The pionless EFT input in the strangeness S = -2 sector consists of (i) a AA contact term constrained by the AA scattering length a_{AA} , using a range of values compatible with AA correlations observed in relativistic heavy ion collisions, and (ii) a AAN contact term constrained by the only available A \leq 6 AA hypernucler binding energy datum of $_{AA}^{6}$ He.

The recently debated neutral three-body and four-body systems $_{\Lambda\Lambda}{}^{3}n$ and $_{\Lambda\Lambda}{}^{4}n$ are found unbound by a wide margin. A relatively large value of $|a_{\Lambda\Lambda}|$ approx. 1.5 fm is needed to bind $_{\Lambda\Lambda}{}^{4}H$, thereby questioning its particle stability. In contrast, the particle stability of the A = 5 $\Lambda\Lambda$ hypernuclear isodoublet $5\Lambda\Lambda H_{\Lambda\Lambda}{}^{5}H_{-\Lambda\Lambda}{}^{5}H$ is robust, with Λ separation energy of order 1 MeV.

Práce vznikla v průběhu půlroční stáže na Hebrejské Univerzitě v Izraeli, která byla podpořena projektem Fyzici v pohybu (KINEÓ), registrační číslo CZ.02.2.69/0.0/0.0/16_027/0008491.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

