

01

Quarks in a finite volume and deconfinement as percolation of center-electric fluxes in QCD

Prague, 17 April 2023

Bundesministerium für Bildung und Forschung

 Helmholtz
 Forschungsakademie Hessen für FAIR

lad Ghanbarpour, Lorenz von Smekal

06 (2022) 054513 [arXiv:2206.116

- Quark in a finite volume why bother?
- Center-vortex and electric-flux ensembles in pure gauge theory
- Stacks of closed center vortex sheets for full QCD
- Flux tube model for heavy-dense QCD
- Percolation of electric fluxes
- Summary and Outlook

• Why bother?

• consider canonical partition functions:

$$Z_c(T, V, N_q) = 0$$
, for $N_q \neq 0 \mod 3$

→ Polyakov loop paradox

Kratochvila & de Forcrand, PRD 73 (2006) 114512

follows from Roberge-Weiss symmetry

Roberge & Weiss, NPB 275 (1986) 734

• imaginary chemical potential: $\mu/T = i heta$

fugacity expansion

→ Fourier series

period
$$2\pi/3$$
 \sim $Z^{I}(\theta) \equiv Z(T, V, i\theta T) = \sum_{N_q} e^{iN_q\theta} Z_c(T, V, N_q)$

grand canonical at imaginary μ

canonical ensembles

 \rightarrow only every 3rd Fourier coefficient \neq 0

...we've just changed the temporal b.c.'s without changing the spatial ones!

change spatial b.c.'s to account for Gauss' law

back up — pure SU(N) gauge theory:

CRC-TR 211

(d+1)-dim spacetime

 $Z_e(\vec{e}) = \frac{1}{N^d} \sum e^{2\pi i \, \vec{e} \cdot \vec{k}/N} Z_k(\vec{k})$

 $\vec{k} \in \mathbb{Z}_{N}^{d}$

und Forschung

7 x

act as interfaces in spin model dual to electric fluxes

 \boldsymbol{x}

change link variables

 aN_t

1/T

 aN_s

au

y

HFHF

multiply plaquette couplings by non-trivial center element

• fix total # mod. N of center vortices through planes

• implement on lattice

't Hooft's Twisted B.C.'s

universality

Bundesministerium

für Bildung

und Forschung

Closed Center Vortex Sheets

• pure gauge theory remove with variable transform

heavy-dense limit of QCD

static fermion determinant

• Z₃-Fourier transform over closed center vortex sheets

fix electric flux through $S = \partial V$

or net quark number mod. 3 inside

Full Lattice QCD

• with arbitrary spatial hops

(anti-)quarks/diquarks can hop in and out of V

• introduce between *all* time slices

 $N_{ au}$ closed center-vortex sheets

• Z₃-Fourier transforms

over $N_{ au}$ closed center-vortex sheets

→ selective static membrane at $S = \partial V$ (only hadrons can pass)

Full Lattice QCD

24.0

• final result, to fix charge in V

$$Z(q_V \mod 3 = e) = \frac{1}{3^{N_\tau}} \sum_{\{z_\tau \in Z_3\}} \left[\prod_{\tau=1}^{N_\tau} z_\tau^{-e} \right] Z(\{z_\tau\})$$

total charge (net quark number) modulo 3 in sub-volume *V*, write $q_V =_3 e$

with
$$Z(\{z_{\tau}\}) = \int \mathcal{D}[\ldots] e^{-S_G(\{z_{\tau}\},U) - S_F(U,\overline{\psi},\psi)}$$

only in gauge action

• twisted plaquette action

Heavy-Dense QCD

effective Polyakov-loop theory

(1 flavor Wilson)

$$Z_{\mathsf{eff}} = \int \left(\prod_{i} \mathrm{d}L_{i} J(L_{i}) Q(L_{i})\right) \prod_{\langle i,j \rangle} \left(1 + 2\lambda \operatorname{Re}L_{i}L_{j}^{*}\right)$$

Fromm, Langelage, Lottini, Philipsen, JHEP 01 (2012) 042 Langelage, Neuman, Philipsen, JHEP 09 (2014) 131

leading order hopping expansion static fermion determinat → site factors

$$Q(L) = \left(1 + hL + h^2L^* + h^3\right)^2 \left(1 + \bar{h}L^* + \bar{h}^2L + \bar{h}^3\right)^2$$

where

 $h(\mu) = e^{(\mu - m)/T}$ $\bar{h}(\mu) = h(-\mu)$

Pietri, Feo, Seiler, Stamatescu, PRD 76 (2007) 114501

Heavy-Dense QCD

reduce to Potts model

maintain leading moments of reduced Haar measure

$$T_{m,n} = \int \mathrm{d}L \, J(L) \, L^m {L^*}^n$$

tabulated in

Uhlmann, Meinel, Wipf, J. Phys. A 40 (2007) 4367

replace group integrations

$$L \to z \in Z_3, \quad \int \mathrm{d}L J(L) f(L) \to \frac{1}{3} \sum_{z \in Z_3} f(z)$$

reproduces $T_{m,n}$ with m+n < 4

• o.k. in heavy-dense limit

at strong coupling, or $~T \lesssim T_c$

Smith, Dumitru, Pisarski, LvS, PRD 88 (2013) 054020 Endrodi, Gattringer, Schadler, PRD 89 (2014) 054509

• for QCD at strong coupling

with static fermion determinant

CRC-TR 211

$$\begin{split} Z_{\text{eff}} &= \frac{1}{3^{N_s}} \sum_{\{z_i \in Z_3\}} \prod_{\langle i,j \rangle} \left(1 + 2\lambda \operatorname{Re} z_i z_j^* \right) \times \\ &\left(\prod_i \left(1 + h z_i + h^2 z_i^* + h^3 \right)^2 \left(1 + \bar{h} z_i^* + \bar{h}^2 z_i + \bar{h}^3 \right)^2 \right) \\ &= \mathcal{N} \sum_{\{z_i \in Z_3\}} \exp\left\{ \sum_{\langle i,j \rangle} 2\gamma \operatorname{Re} z_i z_j^* \right\} \times \\ &\left(\prod_i \left(1 + h z_i + h^2 z_i^* + h^3 \right)^2 \left(1 + \bar{h} z_i^* + \bar{h}^2 z_i + \bar{h}^3 \right)^2 \right) \end{split}$$

• Roberge-Weiss symmetric

with $\gamma = rac{1}{3} \ln \left(rac{1+2\lambda}{1-\lambda}
ight)$

Bundesministerium

für Bildung

und Forschung

from global Z₃ symmetry

$$Z_{\rm eff}(T,\mu=i\theta T) \equiv Z_{\rm eff}^{I}(\theta) = Z_{\rm eff}^{I}(\theta+2\pi/3)$$

• flux-tube model representation (dual)

$$Z_{\text{eff}}(T,\mu) = \sum_{\{n,l\}_{\text{phys}}} \exp\left\{-\beta\left(H(n,l) - \mu\sum_{i}q_{i}\right)\right\} \text{ analogous to:}$$
Patel, NPB 243 (1984) 411

 ϕ_i

here with:

CRC-TR 211

 $H(n,l) = \sum_{\langle i,j \rangle} \sigma |l_{\langle i,j \rangle}| + \sum_{i,s} m(n_{i,s} + \bar{n}_{i,s})$

fluxes represented by link variables:

$$l_{\langle i,j\rangle} \in \{-1,0,1\}$$

(anti-)quark occupation numbers:

• Z₃-Gauss' law:

(Poisson equation)

$$\sum_{j \sim i} l_{\langle i,j \rangle} - \sum_{s} (n_{i,s} - \bar{n}_{i,s}) = 0 \mod 3$$

 $q_i \mod 3$

 $n_{i,s} \in \{0, \ldots, 3\}$ and $\bar{n}_{i,s} \in \{0, \ldots, 3\}$

flux from volume around site *i*

net-quark number modulo 3

Bernard, DeGrand, DeTar, Gottlieb, Krasnitz,

Sugar, Toussain, PRD 49 (1994) 6051

Condella & DeTar, PRD 61(2000) 074023

spin $s = \{\uparrow,\downarrow\}$

Electric fluxes

d = 1

d = 3

• interfaces in flux-tube model

dual stacks of links S^{\ast}

$$H(n,l) = \sum_{\langle i,j \rangle} \sigma |l_{\langle i,j \rangle}| + \sum_{i,s} m(n_{i,s} + \bar{n}_{i,s})$$

• flux through interface

$$\phi_S = \sum_{\langle i,j\rangle \in S^*} l_{\langle i,j\rangle}$$

• add constraint to fix

 $\phi_S = e \mod 3$

example flux config without (anti-)quarks

d = 2

 $\phi_S \mod 3 = 1$

Bundesministerium für Bildung

und Forschung

• flux-tube model with interface

$$Z(q_V =_3 e)$$

$$= \sum_{\{l,n\}} \exp\left\{-\beta\left(H(\{l,n\}) - \mu \sum_i q_i\right)\right\} \underbrace{\left(\frac{1}{3}\sum_{z \in Z_3} z^{\phi_S - e}\right)}_{\text{flux constraint}} \prod_j \left(\frac{1}{3}\sum_{z \in Z_3} z^{\phi_j - q_j}\right)$$

$$\underbrace{= \frac{1}{3}\sum_{z \in Z_3} z^{-e} \sum_{\{l,n\}} \exp\left\{-\beta\left(H(\{l,n\}) - \mu \sum_i q_i\right)\right\} z^{\phi_S} \prod_j \left(\frac{1}{3}\sum_{z \in Z_3} z^{\phi_j - q_j}\right)$$

back to dual Potts model

$$\begin{split} \sum_{\{l\}} \left(\prod_{\langle i,j \rangle} e^{-\beta \sigma |l_{\langle i,j \rangle}|} \right) z^{\phi s} \left(\prod_{k} z_{k}^{\phi_{k}} \right) & \text{with interface:} \\ &= \prod_{\langle i,j \rangle} \left(1 + 2\lambda \operatorname{Re} \left(z^{-s_{\langle i,j \rangle}} z_{i} z_{j}^{*} \right) \right) & s_{\langle i,j \rangle} = \begin{cases} 1, & \langle i,j \rangle \in \mathcal{S}^{*} \\ -1, & \langle j,i \rangle \in \mathcal{S}^{*} \\ 0, & \text{otherwise} \end{cases} \end{split}$$

Ensembles with Fixed Flux

• Z₃-Fourier transform

$$Z(q_V =_3 e) = \frac{1}{3} \sum_{z \in \mathbb{Z}_3} z^{-e} Z_S(z)$$

Z₃-flux ensembles

Z₃-interface ensembles

• interface ensembles

Test in (1+1)d

Bundesministerium für Bildung und Forschung

• net quark number density

• q-state Potts, Boltzmann factor:

$$\omega(\{s,b\}) = \prod_{\langle i,j \rangle} \left(e^{-K} \delta_{b_{\langle i,j \rangle},0} + (1 - e^{-K}) \delta_{b_{\langle i,j \rangle},1} \delta_{s_i,s_j} \right) \prod_i e^{h \delta_{s_i,0}}$$

site-bond representation

Edwards & Sokal, PRD 38 (1988) 2009

• place bond: $b_{\langle i,j
angle} \in \{0,1\}$ with probability $1-e^{-K}$

between like nearest-neighbor spins $s_i \in \{0, 1, \ldots q-1\}$

• infinite external field: $h \to \infty \rightsquigarrow$ bond percolation

with bond probability $p = 1 - e^{-K}$, K = J/T controlled by temperature

• vanishing external field: $h \rightarrow 0$,

if $p = p_c$ at $T = T_b > T_c \rightsquigarrow$ bond percolation in ordered phase below T_c

lose at Curie temperature T_c

CRC-TR 21

Bundesministerium für Bildung

und Forschung

• q-state Potts, 2 dimensions:

Blanchard, Gandolfo, Laanait, Ruiz, Satz, J. Phys. A 41 (2008) 085001

CRC-TR 21

$$R(T,\mu,L) = \frac{1}{Z_{\text{flux}}} \sum_{\{n,l\} \in \mathcal{R}} \exp\left\{-\beta \left(H(n,l) - \mu q\right)\right\}$$

set of percolating configs \mathcal{R} :

contain at least one cluster of bond configurations spanning the entire volume in at least one direction

• simulate with worm algorithm

Prokof'ev & Svistunov, PRL 87 (2001) 160601 Korzec & Vierhaus, 2011, CPC 182 (2011) 1477 Delgado, Evertz, Gattringer, CPC 183 (2012) 1920 Rindlisbacher, Akerlund, de Forcrand, NPB (2016) 542

• measure with fully-dynamic connectivity algorithm

Holm, Lichtenberg, Thorup, J. ACM 48 (2001) 723 Alexandru, Bergner, Schaich, Wenger, PRD 97 (2018) 114503

JUSTUS-LIEBIG-

UNIVERSITAT

Bundesministerium

für Bildung

und Forschung

• infinitely heavy quarks

CRC-TR 211

Z₃-Potts (1st order transition)

• infinitely heavy quarks

CRC-TR 211

Z₃-Potts (1st order transition)

massless limit

bond percolation (2nd order)

Wang, Zhou, Zhang et al., PRE 87 (2013) 052107

massless limit

CRC-TR 211

bond percolation (2nd order)

 $m=0,\ \mu=0$ 1 $\nu^{-1} = 1.1410(15)$ 2^{nd} order FSS $p_{\rm c} = 0.24881182(10)$ 0.8 $\rightsquigarrow (\beta \sigma a)_{\rm c} \approx 1.7981$ $R(\beta\sigma a,L)$ 0.6 0.4EL = 16L = 20L = 24 $0.2 \downarrow L = 32$ $L = 40 \quad \longrightarrow$ L = 52L = 640 -220 6 8 -6-44 $(\beta\sigma a - (\beta\sigma a)_{\rm c}) \cdot L^{1/\nu}$

• fairly light quarks

smooth Z₃-Potts crossover

Bundesministerium

für Bildung

und Forschung

• fairly light quarks

smooth Z₃-Potts crossover

Bundesministerium

für Bildung

und Forschung

• medium heavy quarks

CRC-TR 211

still in Z₃-Potts crossover region

JUSTUS-LIEBIG-

UNIVERSITAT

GIESSEN

• medium heavy quarks

CRC-TR 211

still in Z₃-Potts crossover region

JUSTUS-LIEBIG-

UNIVERSITAT

GIESSEN

CRC-TR 211

JUSTUS-LIEBIG-

UNIVERSITAT

GIESSEN

Summary

Bundesministerium für Bildung

und Forschung

• Quarks and triality in a finite volume

from FTs over stacks of closed center vortex sheets

• Proof in two ways:

[see Ghanbarpour, LvS, arXiv:2206.11697 [hep-lat]]

1. dualization of quark action

Gattringer & Marchis, NPB 916 (2017) 627 Marchis & Gattringer, PRD 97 (2018) 034508

2. transfer matrix approach

Lüscher, Com. Math. Phys. 54 (1977) 283, Borgs & Seiler, Com. Math. Phys. 91 (1983) 329 Palumbo, NPB 645 (2002) 309, Mitrjushkin, NPB (PS) 119 (2003) 326

• Illustration: heavy-dense QCD

effective theory dual to flux-tube model

Summary

• Percolation of electric fluxes in effective theory

geometric deconfinement phase transition at strong coupling with static fermion determinant

Potts model

Summary & Outlook

• Percolation of electric fluxes in QCD

expect: geometric deconfinement phase transition have: gauge invariant definition of fluxes and spanning probability

• Entanglement entropy in QCD

so far only in pure gauge theory Buividovich, Polikarpov, NPB 802 (2008) 458

Thank you for your attention!

