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Univerzita Mateja Bela, Banská Bystrica, Slovakia
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The big goal: phase diagram of the QCD
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〈N〉 =
∑

i

NiPi =

∑
i Niwi∑

i wi
=

∑
i Ni exp

(
−Ei−µNi

T

)
∑

i exp
(
−Ei−µNi

T

) =

∂Z
∂ µ

T

Z
=
∂ lnZ

∂ µT

Relativistic system:

creation and annihilation of particle-antiparticle pairs

study charges which are conserved in microscopic interactions

fluctuations by exchange with the heatbath

mean baryon number

〈B〉 =
∂ lnZ

∂ µB
T
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Fluctuations of a conserved charge II

Cumulants of the net-baryon number distribution from derivatives of logZ

∂ lnZ
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central moments µi , cumulants κi , susceptibilities χi
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Susceptibilities and the phase diagram

Susceptibilities in the Ising model (same universality class)
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FIG. 1. Upper panel: κ2,3,4(H) at fixed t > 0. Lower panel:
the Ising model phase diagram with Line A the maximum of
κ3 (also κ4 = 0), and Line B the maximum of κ4. The curved
lines are example freeze-out lines, drawn to model how they
may pass through the scaling region in QCD.

leading, model-dependent, analytic contributions. Our
strategy is to draw a few generic freeze out lines, de-
picted in the lower panels of Fig. 2 and Fig. 1, then ask
whether there are common features of susceptibilities on
those lines. In Fig. 1, we assume that the freeze out line
is a function of t. Going from high to low t, the sim-
plest case is FO1, which crosses lines A and B once each.
The corresponding κ4-κ3 curve is shown in Fig. 3 with
the curve going anti-clockwise forming a “banana” shape
from high to low t. This figure shows the ordering

tmin,κ4 > tmax,κ3 > tmax,κ4 > 0 , (5)

necessarily arises from the derivative relation between the
κn and κn+1. All features occur at temperature higher
than the critical point temperature. As the fluctuations
become larger closer to the CEP , the closer the freeze
out line to the CEP , the larger and more elongated the
banana is.

In Fig. 1, we also consider a freeze out line FO2 that

FIG. 2. Upper left (right): density plot of κ3 (κ4) in the Ising
model. Regions of κi > 0 are in blue and κi < 0 are in red.
The dotted (black) line is the same as Line A in Fig. 1 and dot-
dashed (red) line the same as Line B. Lower panel: A sketch of
the peaks in χ3 and χ4 on a plausible phase diagram of QCD
together with a hypothetical freeze-out line. Comparison to
the location of the maxima in χ3 and χ4 in Fig. 1 suggests how
the freeze-out line may be mapped into the Ising coordinates.

crosses line B twice. The corresponding κ4-κ3 plot in Fig.
3 also has the banana shape but has two local maximum
peaks in κ4. Those features remain when one plots m2-
m1 instead of κ4-κ3 since κ2 changes slowly when κ3(4)

changes rapidly.

One can draw other possible freeze out lines, but the
feature of an anti-clock wise loop remains, provided the
line remains in the H < 0 half-plane as is physically
sensible for freeze-out in the hadronic phase. This can
be seen from the fact that at high t, the freeze out line
can start from the regime above line A, between lines A
and B, or below line B, while at low t, it goes below line
B. This implies these freeze out lines at high and low t
will look very similar to FO1 and FO2 in Fig. 3 near the
origin. This is enough to decide the loop is anti-clock
wise which is a feature in common with experiment data
[15, 16, 23].

Scenario II: CEP at T <∼ 0—As we argue above,
the banana shape in m2-m1 is due to the scaling symme-
try governed by the CEP . But could this connection be
so strong such that the banana shape is observable even
if the CEP is at T = 0 or even T < 0? One example
is high-Tc superconductors [18]. It is hypothesized that

[J.W. Chen et al.: Phys. Rev. D 95 (2017) 014038]
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Combinations of cumulants

variance, skewness, kurtosis, hyperskewness, hyperkurtosis
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These cumulants, moments, and their combinations still depend on volume
⇒ construct volume-independent combinations
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Measure the net-proton number fluctuations

baryon number susceptibilities χB
i calculated on the lattice

enhancement of susceptibilities near the critical point

susceptibilities might be measurable as cumulants of baryon number distribution

B-number not measurable, since no neutrons are measured

Conflict!

susceptibilities are calculated in grand-canonical ensemble
cumulants are measured in real collisions which conserve B, have limited acceptance, and
measure (almost) only protons

many papers devoted to these subjects (!!!)
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Data: enhanced net-proton number fluctuations at
√
sNN = 7.7 GeV

Not all baryons are measurable

net-proton number as proxy for
the net baryon number

enhanced κ4/κ2 at√
sNN = 7.7 GeV

not reproduced by theoretical
calculations

6

maximum number of participants, Nmax
part (394 for Au+Au

collisions), suppresses the initial volume fluctuations.

FIG. 3. Centrality dependence of the proton cumulant ratios
for Au+Au collisions at p

sNN = 3.0 GeV. Protons are from
�0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. Systematic uncer-
tainties are represented by gray bars. Statistical uncertainties
are smaller than marker size. CBWC is applied to all cumu-
lant ratios. While open squares represent the data without
correction, blue triangles and red circles are the results with
VFC using the hNparti distributions from the UrQMD and
Glauber models, respectively.

FIG. 4. Similar to Fig. 3: Rapidity and transverse mo-
mentum dependence of the proton cumulant ratios for 0–5%
central collisions. Black-squares, red-dots and blue-triangles
stand for data without and with the VFC using Glauber and
UrQMD, respectively.

Figure 4 depicts the cumulant ratios as a function of
rapidity y and transverse momentum pT in 0–5% central
collisions without and with the VFC. It is expected [45–

47] that the cumulant ratios approach the Poisson base-
line in the limit of small acceptance. For C3/C2, the ra-
tios with the VFC (UrQMD) and without the VFC devi-
ate from the Poisson baseline at the narrow rapidity win-
dows. The VFC (Glauber) ratio approaches unity as the
acceptance is decreased. For the C4/C2 ratio, the VFC
has a negligible effect in the most central bin. Therefore,
C4/C2 is reported without VFC in the discussions below.
In the central 0–5% collisions, as shown in Fig. 4, one ob-
tains C4/C2 = �0.85 ± 0.09 (stat.) ± 0.82 (syst.) in the
kinematic acceptance of �0.5 < y < 0 and 0.4 < pT < 2.0
GeV/c. The UrQMD model qualitatively reproduces the
acceptance dependence of the data, see Fig. 6 in the sup-
plemental material [37].

FIG. 5. Collision energy dependence of the ratios of cumu-
lants, C4/C2, for proton (squares) and net-proton (red circles)
from top 0–5% Au+Au collisions at RHIC [14, 15]. The points
for protons are shifted horizontally for clarity. The new re-
sult for proton from p

sNN = 3.0 GeV collisions is shown as a
filled square. HADES data of psNN = 2.4 GeV 0–10% colli-
sions [48] is also shown. The vertical black and gray bars are
the statistical and systematic uncertainties, respectively. In
addition, results from the HRG model, based on both Canon-
ical Ensemble (CE) and Grand-Canonical Ensemble (GCE),
and transport model UrQMD are presented.

A non-monotonic energy dependence of the net-proton
C4/C2 was reported for 0–5% central Au+Au collisions
at p

s
NN

= 7.7–200 GeV [14, 15]. A similar energy de-
pendence of the C4/C2 of protons is also evident (open
squares in Fig. 5). Though a minimum appears around
20 GeV, both the C4/C2 ratio of protons and net-protons
at 7.7 GeV are close to unity, albeit the large statistical
uncertainties. Meanwhile, the C4/C2 value for Au+Au
collisions at ps

NN
= 3.0 GeV is around �1. The negative

value of the proton C4/C2 is reasonably reproduced by
the transport model UrQMD [17, 49].

The study of cumulant ratios in heavy-ion colli-
sions has motivated several QCD inspired model cal-

[STAR collaboration: 2112:00240]
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A toy model Monte Carlo simulation

baryon number is conserved

only protons and neutrons (and their antiparticles) in the simulations

only a (fluctuating) part of incoming nucleons participate

isospin of individual wounded nucleons is kept

wounded nucleons have double-Gaussian rapidity distribution
protons from this source fluctuate due to:

fluctuations of number of wounded nucleons
random number of protons out of wounded nucleons, track isospin
limited acceptance out of the whole rapidity distribution

additionally produced BB̄-pairs flat in rapidity
(net) protons from this source fluctuate due to:

Poissonian fluctuations of BB̄ pairs with mean proportional to Nwound

random number of protons and antiprotons (p = 1/2)
limited acceptance out of the whole rapidity distribution

⇒ composition wounded/produced protons depends on energy, centrality,
and rapidity window
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Rapidity distribution of wounded nucleons

dNw
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(y) =

Nw

2
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2πσ2
y

{
exp

(
−(y − ym)2

2σ2
y

)
+ exp
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Parameter settings:

σy = 0.8

obtain ym from

Np−p̄ =
Z

A

∫ yb

−yb

dNw

dy
dy

where
Np−p̄ in |y | < yb = 0.25
is taken from STAR:
PRC79 (2009) 034909, PRC96 (2017) 044904
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Boris Tomášik (CTU & UMB) Non-critical particle number fluctuations 15.4.2023 10 / 28



Rapidity distribution of produced NN̄ pairs

dNBB̄

dy
= NBB̄

C

1 + exp
(
|y |−ym

a

)
Parameter settings:

C =
(
2a ln

(
eym/a + 1

))−1

a = σy/10

obtain NBB̄ from

Np̄ =
1

2

∫ yb

−yb

dNBB̄

dy
dy

where
Np̄ in |y | < yb = 0.25
is taken from STAR:
PRC79 (2009) 034909, PRC96 (2017) 044904
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Other model faetures

Isospin determination

Wounded nucleons remember their isospin. This feature can be turned off and on.

Wounded proton number thus follows hypergeometric distribution.

A produced nucleon becomes proton with probability 1/2.

Glauber Monte Carlo

we use GLISSANDO 2
[M. Rybczyński et al., Comp. Phys. Commun. 185 (2014) 1759]

centrality is determined based on deposited energy measure (analogically to experiment)
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Exercise: Baryon number conservation

Moments of baryon number distribution around midrapidity given by Poissonian distribution.
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Net-proton number: dependence on rapidity window width

Moments of net proton number distribution around midrapidity.
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Dependence on ∆y : fixed Nw vs. Glauber MC

Moments of p − p̄ distribution around y = 0

Nw = 338
NBB̄ = 16.94
ym = 1.019
(
√
sNN = 19.6 GeV)

2× 107 events
Glauber MC:
1.2× 106 events
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[see also: Braun-Munzinger, Rustamov, Stachel]
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Dependence on ∆y : fixed Nw vs. Glauber MC

Moments of p − p̄ distribution around y = 0: zoom into detector coverage

Nw = 338
NBB̄ = 16.94
ym = 1.019
(
√
sNN = 19.6 GeV)

2× 107 events
Glauber MC:
1.2× 106 events

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.5  1  1.5  2

µ
1

∆y

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  0.5  1  1.5  2

µ
3

∆y

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

S
σ

∆y

Glauber MC
fixed Nw

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.5  1  1.5  2

µ
2

∆y

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  0.5  1  1.5  2

µ
4

∆y

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

κ
σ

2

∆y

[see also: Braun-Munzinger, Rustamov, Stachel]
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Net-proton number: dependence on rapidity

Moments of p − p̄ distribution for ∆y = 0.5

Nw = 338
NBB̄ = 16.94
ym = 1.019
(
√
sNN = 19.6 GeV)

2× 107 events
Glauber MC:
1.2× 106 events
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cf: [J. Brewer, S. Mukharjee, K. Rajagopal, Y. Yin, Phys. Rev. C 98 (2018) 061901]

Boris Tomášik (CTU & UMB) Non-critical particle number fluctuations 15.4.2023 16 / 28



Net-proton number: dependence on rapidity

Moments of p − p̄ distribution for ∆y = 0.5: zoom into detector coverage

Nw = 338
NBB̄ = 16.94
ym = 1.019
(
√
sNN = 19.6 GeV)

2× 107 events
Glauber MC:
1.2× 106 events
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cf: [J. Brewer, S. Mukharjee, K. Rajagopal, Y. Yin, Phys. Rev. C 98 (2018) 061901]
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Dependence on rapidity for different collision energies

Fixed Nw = 338, NBB̄ = 16.94, ym = 1.019, 2× 107 events,
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Net-proton number: dependence on centrality
√
sNN = 19.6 GeV: ym = 1.019, NBB̄/Nw = 0.050

Statistics: 2× 107 for fixed Nw , ∼ 5× 105 for Glauber MC
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Sσ and κσ2 are lowered towards more central events of wounded protons nucleons remember
their isospin.
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Net-proton number: dependence on collision energy

rapidity bin ∆y = 0.5 around y = 0
Statistics: 2× 107 events for fixed Nw , 1.2× 106 events for Glauber MC
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The importance of produced BB̄ pairs grows with increasing energy.
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Net-proton number fluctuations from the statistical model

Not calculable as derivatives of the partition function!
derivatives of logZ only contain fluctuations due to exchange with the heat bath
decays of resonances are random and may randomize proton number (even at fixed B)

cumulants of proton and antiproton number via derivatives of the generating function〈
(∆N)l

〉
c

=
dlK (iξ)

d(iξ)l

∣∣∣∣
ξ=0

K (iξ) = ln
∞∑

N=0

e iξNP(N) =
∑

R

ln


∞∑

NR =0

PR(NR)
(
e iξpR + (1− pR)

)NR


PR(NR): number probability of resonance R, furnished by statistical model

Net-proton number cumulants obtained via〈
(∆Np−p̄)l

〉
c

=
〈

(∆Np)l
〉

c
+ (−1)l

〈
(∆Np̄)l

〉
c
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Partial chemical equilibrium

Statistical production can be used to describe hadron abundances and also their spectra

(Simple) statistical model of interacting hadrons: interactions via inclusion of (free)
resonance states [R. Dashen, S.K. Ma, H.J. Bernstein, Phys. Rev. 187 (1969) 345]

Chemical freeze-out

Hadron abundances set by three (four)
parameters: V , Tch, µB , (γs)

T ∼ 140− 160 MeV
(
√
sNN dependent, above 7.7 GeV)

Kinetic freeze-out

Sets the pT spectra

need transverse expansion

slope due to Tk and 〈vt〉
Tk ∼ 80− 120 MeV (also higher)

How to build a scenario with chemical and kinetic freeze-out?

need to freeze the effective numbers of stable hadrons—projected numbers after decays of
all resonances Neff

h =
∑

r pr→h〈Nr 〉
Assumption: at chemical freeze-out inelastic collisions stop and elastic continue
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The chemical potentials

ground state species do not change one into other ⇒
chemical potential for each

towers of resonances above every stable hadron species

resonances always in equilibrium with ground state
⇒ it does not cost extra energy to produce or decay
resonance into stable species

resonance chemical potentials from those of stable
hadrons, e.g. µρ = 2µπ , µω = 3µπ

resonances that decay into two different stable species,
e.g. µ∆ = µN + µπ , µK(892) = µπ + µK

π

ΝΝ

Κ

ΝΝ

.  .  .

Resonances with more decay channels, chain decays:

µR =
∑

h

pR→hµh

[H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378 (1992) 95]
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Boris Tomášik (CTU & UMB) Non-critical particle number fluctuations 15.4.2023 22 / 28



Evolution of chemical potentials

Keep the (effective stable) particle numbers constant, as a function of temperature!

〈Neff
h 〉 =

∑
r

pr→hV (T )nr (T , {µ(T )}) , d〈Neff
h 〉

dT
= 0

−
dV
dT

V

∑
r

pr→hnr (T ) =
∑

r

pr→h
dnr (T )

dT

Obtain the derivative of volume from entropy conservation: 0 = dS/dT = d(sV )/dT

−
dV
dT

V
=

ds
dT

s

Equations for the evolution of chemical potentials∑
r pr→h

dnr (T ,{µ(T )})
dT

ds/dT
=

1

s

∑
r

pr→hnr (T , {µ(T )})
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Evolution of chemical potentials: results

Start the evolution of chemical potentials at the chemical freeze-out
[STAR collab., Phys. Rev. C 96 (2017) 044904 and ALICE collab., Nucl. Phys. A 904-905 (2013) 531c]
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Net-proton number fluctuations from PCE

Cumulants of the resonance number distributions

〈NR 〉c =
gRV

2π2
m2

RT
∞∑

j=1

(∓1)j−1

j
e jµR/TK2

(
jmR

T

)
,

〈
(∆NR)l

〉
c

=
gRV

2π2
m2

RT
∞∑

j=1

(∓1)j−1j l−2e jµR/TK2

(
jmR

T

)
.

first terms in the sums correspond to Boltzmann approximation (not BE or FD)

In Boltzmann approximation, cumulants of all orders are the same!
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Results for net-proton cumulants in PCE
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Results for K+ − K− cumulants in PCE
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Conclusions

Net baryon number fluctuations are sensitive to the statistical properties of the matter in
the phase diagram.

Only (net) proton number in limited detector acceptance is measurable—this involves
other effects on which fluctuations depend.

Exciting data on χ4/χ2 at
√
sNN = 7.7 GeV.

A “minimal” model for proton number fluctuations:
rapidity dependent composition through two components: wounded B and produced BB̄
Glauber MC (GLISSANDO 2)

Results from minimal model:
rapidity dependence of κσ2 with

√
sNN -dependent minimum

baryon number conservation: decrease of Sσ and κσ2 with lower energies

Results from Partial Chemical Equilibrium on net-proton number fluctuations
[B. Tomášik, P. Hillmann, M. Bleicher, Phys.Rev.C 104 (2021) 044907]

volume-independent ratios of cumulants of net-proton number are almost temperature
independent ⇒ they reflect values at chemical freeze-out
experimental data on cumulants at low energies are not reproduced
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