

ALICE experiment Past, Present & Future

- Using materials from:
- F. Antinori J. Bielčíková A. Dainese L. Fabbietti P. Giubellino G.M. Innocenti J. Klein F. Křížek M. van Leeuven

. . .

30 anniversary of ALICE Letter of Intent

Karel Šafařík, Czech Technical University (ČVUT), Prague

This contribution is supported by the project Centre of Advanced Applied Sciences with the number: CZ.02.1.01/0.0/0.0/16-019/0000778 Project Centre of Advanced Applied Sciences is co-financed by European Union

Overview of the talk

- ALICE experiment history
- Physics highlights Run 1 and 2
- ALICE upgrade for Run 3
- ALICE future

Upgrade for Run 2 ALICE 3 project

Heavy lons @ LHC

- First (sub-)detector concepts of heavy-ion experiment at the LHC
 - Aachen 1990 conference (E.Quercigh, P.Sondereger, H.Specht, ...)
- Heavy-ion detector proposal(s) •
 - Evian 1992 workshop (dedicated detector, modified DELPHI, CMS)
- Letter of Intent 1993 ALICE experiment (addition of muon spectrometer requested by LHCC) •
- Technical Proposal 1995 (1996 2006 addenda), approved 1997 •
- 1998 2005 Technical Design Reports ٠

LHC Energy

And for pp collisions:

$$E_{lab pp(14TeV)} = 0.15 \ E_{AS} \ in \approx \frac{1}{4} \ E_{AS} \times \frac{1}{2}" = \frac{1}{8} \ E_{AS} \times 1" = \dots$$

For those who don't like to be seated on a lead ion (and to fly inside LHC vacuum pipe)

```
E_{cms Pb-Pb} = 5500 A GeV = 1.14 \times 10^{9} MeV
```

(HFI, etc.)

$$E_{cms Pb-Pb} = 10^{-3} \pounds_{AS} \times 1.6$$
" (= 0.45 g × 4 cm)

Still, macroscopic energy !!! (one can actually hear it) But the size of ions is by factor more than 10⁻¹² smaller

Early ALICE designs

ALICE @ Lol time

Mega-Alice in 1994

RLICE WITH MUON ARM LAYOUT

ALICE in TP (1995)

Many years of R&D

RHIC

RHIC

RHIC

Inner Tracking System (ITS)

- Silicon Pixels (RD19)
- ⇒ Silicon Drift (INFN/SDI)
- ⇒ Silicon Strips (double sided)
- ⇒ low mass, high density interconnects

₽

⇒ low mass support/cooling

• TPC

- ⇒ gas mixtures (RD32)
- ⇒ new r/o plane structures
- ⇒ advanced digital electronics
- ⇒ low mass field cage

em calorimeter

⇒ new scint. crystals (RD18)

PID

- ⇒ Pestov Spark counters
- ⇒ Parallel Plate Chambers
- ⇔ Multigap RPC's (LAA)
- ➡ low cost PM's
- ⇒ Csl RICH (RD26)

DAQ & Computing

 \Rightarrow scalable architectures with <u>COTS</u> ?

÷

- ⇒ high perf. storage media
- ⇒ GRID computing

?

ት

RHIC

• misc

- ⇒ micro-channel plates
- \Rightarrow rad hard quartz fiber calo.
- ⇒ VLSI electronics

9

RHIC

R&D example: Time of Flight

- aim: state-of-the-art TOF at ~1/10 current price !
- \Rightarrow requirements: area > 150 m², channels ~ 150,000, resolution σ < 100 ps
- existing solution: scintillator + PM, cost > 150 MSF !
 R&D on cheaper fast PM's failed
- gas TOF counters + VLSI FEE
 - Pestov Spark Counter (PSC) <u>HIGH TEC</u>
 100 μm gap, > 5 kV HV, 12 bar, sophisticated gas
 - ✿ σ < 50 ps, but only (!) ~ 1/5 cost
 - technology & materials VERY challenging
 - ⇒ Parallel Plate Chamber (PPC) LOW TEC
 - 1.2 mm gap, 1 bar, simple gas & materials
 - 1/10 cost, but only σ = 250 ps
 - unstable operation, small signal
 - ➡ Multigap Resistive Plate Chambers (MRPC)
 - breakthrough end 1998 after > 5 years of R&D !
 many small gaps (10x250 μm), 1 bar, simple gas & materials
 1/10 cost, σ < 100 ps , simple construction & operation,...

found immediate wide use: HARP, STAR,PHENIX, HADES/CBM@GSI,.. option for time-stamping at ILC/CLIC

ALICE

ĠIJĞ

Silicon Pixel Detectors

Each Stave is built of two HALF-Bus **STAVES**, read out on the two sides of the barrel, respectively. Ladder: 5 chips+1 sensor ALICE1LHCb chip Silicon sensor Grounding foil 193 mm long Cooling tube Carbon-fibre sector

Silicon Pixel Detector assembly

SPD router

Installation in ALICE experiment

Silicon Drift Detectors

Silicon Drift Detector Ladder

Silicon Strip Detectors

SSD Detector

P: 3 short strips 7.5 mrad

N: 11 short strips 27.5 mrad

- Stereo Double-sided short strips , asymmetric
- Produced at IRST, Canberra and Sintef

SPD test at LHC

First beam passing through ALICE (up to 3 km) 08.08.2008

Hictoricaly the first particles in the LHC detected by SPD during injection test 15.06.2008

...was celbrated all around the world 08.08.2008 8pm Beijing

Time Projection Chamber

General features

- Diameter \times Length : 5 m \times 5 m
- \odot Azimuth angle coverage: 2π
- Pseudo-rapidity interval: |η|<0.9
- Readout chambers: 72
- Drift field: 400 V/cm
- \odot Maximum drift time: 96 μs
- Central electrode HV: 100 kV

Gas

- Active volume: 90 m³
- Ne-CO₂-N₂: 85.7% 9.5% 4.8%
- Cold gas low diffusion
- Non-saturated drift velocity
 - \implies temperature stability and homogeneity $\leq 0.1~\text{K}$

Readout

- Pads (3 types): 557 568
- Samples in time direction: 1000
- Data taking rate:
 - ~ 2.8 kHz for p-p
 ~ 300 Hz for Pb-Pb

Time Projection Chamber assembly

Installation at CERN

Time September 10th 2008: circulating beams!

beam 1: 1st complete orbit ~ 10:30

beam 2: 1st complete orbit ~ 15:00

First signals from ALICE

LHC 11th September 2008 "RF-capture"

First orbit

RF capture

2.0n 4.0n 6.0n 8.0n 10.0n 12.0n 14.0n 16.0n 18.0n 20.0n 22.0n

And the second second second

0.0

25.0n

19th September 2008

Jan Fiete Grosse-Oetringhaus

Karel Šafařík: Alice

Tunnel after 19th September

Dipole-Quadrupole Joint after Incident

Physics highlights ALICE 1 Run 1 & 2

Anti-p to p ratio at midrapidity

- - what's corresponding Regge trajectory intercept?

ALICE Collaboration : Midrapidity Antiproton-to-Proton Ratio in pp Collisions at $\sqrt{s}=0.9$ and 7 TeV Measured by the ALICE Experiment; **Phys. Rev. Lett. 105, 072002 (2010)**

M.Broz (Bratislava, Prague) M.Mereš (Bratislava)

Jets recoiling against a high- p_T hadron \rightarrow down to jet $p_T \sim 10$ GeV/c

 Δ_{recoil} vs $\Delta \phi$ broader in Pb-Pb than in pp

Angular deflection of soft large-*R* jets: Scattering on QGP constituents? Medium response to energy loss?

Energy loss: charm vs. beauty

- Energy loss predicted to depend on QGP density, but also on quark mass
- "Dead cone" effect reduces small-angle gluon radiation for high-mass quarks

- Less suppression for (non-prompt) D mesons from B decays than prompt D mesons
- Smaller energy loss for b quarks needed to describe the ratio of R_{AA}

Heavy-flavour flow

ALICE

Heavy flavour participates in the collective dynamics at LHC energies Flow strength like the light hadrons

- Additional dynamics in central Pb-Pb collisions: Λ_c/D^0 enhancement at intermediate p_T
- Suggests hadronization by recombination + mass-dependent p_{T} shift from collective expansion
- Prospects: high-precision, and other baryons, from Run 3 data

QCD interactions among hadrons

Strange particle production

Ø.

- Is there a strangeness enhancement?
- Or is just a continuous development from pp to AA

Nature Physics 13 (2017) 535-539

Ultra-peripheral collisions

- Insight into shadowing and saturation
- gamma-nucleus interactions

ALICE upgrade for Run 3

2010-2012		2015-2018		2022-2024		2028-2030		2032-2034		2036-2039	
Run I	LS1	Run 2	LS2	Run 3	LS3	Run 4	LS4	Run 5	LS5	Run 6	
			We ar here	e 😶		High luminosity LHC					
Major upgrades during LS2 for ALICE and LHCb Precision era for flagship observables!			-	 ATLAS and CMS phase II Replace inner tracking systems to increase coverage Timing layers: e.g. CMS MIP Timing Detector 				e ALIC dedic tor LHCk (CER	ALICE3: a whole new dedicated HI experiment! LHCb upgrade II (CERN-LHCC-2018-027)		
Much m R&D and parallel s	ore in the d Data H sessions	e Detector andling	AL	Calorimeters .ICE ITS3 an	s, muon s d FoCal	system upgra	ades, etc				

Link to LHC schedule

Run3 and run 4 expected lumi for heavy-ion programme: https://arxiv.org/pdf/1812.06772.pdf

F. Bellini, Emergence of QGP phenomena - EPS-HEP - 27.07.2021

- 5 detector technologies. interaction trigger, online luminometer, forward multiplicity

detection layer at 20 mm

36

European Strategy

New all-pixel trackers: ITS-2 and MFT

- ITS-2 seven layers monolithic active pixel sensors
- MFT five layers Muon Forward Tracker in front of absorber

10

MFT – CTU Prague contribution

FUEL

- Muon Forward Tracker at CERN
 - completely new detector for precise tracking in front of muon absorber
 - participation in construction and commissioning
 - system run coordination
 - development of quality control software

Appropriate

6 Oct 2022, 15:34 CEST / 13:34 LITE

2022-10;01

TPC upgrade – GEM readout

Small TPC for drift measurement

Forward Diffractive Detector – CTU Prague

- Forward Diffractive Detector (CTU Prague)
 - new detector, completely built in Prague
 - selects diffractive events
 - participate in triggers
 - acts as luminometer, monitors beam conditions

• installed at CERN C-side in February 2021, A-side in July 2021

ALICE Future

Prague institutions organized ALICE Upgrade Week last year

19–23 September 2022 House of CASTS Novotného lávka 5, Prague, Czech Republic

Upgrade Projects

UW intro | Sep 19, 2022 | MvL, ikl

ALICE 3 Physics Programme

- AFCE 3 Lol submitted recently completely new detector for heavy-ion physics at the LHC high-rate, high-resolution, large-acceptance heavy-ion experiment for Run-5 (~2035)
 - Thermal radiation, chiral symmetry restauration
 - Di-electron mass, p_T spectra, v₂
 - Heavy flavour transport, thermalisation
 - Beauty meson, baryon v₂
 - $D\overline{D}$ azimuthal correlations
 - Multi-charmed baryons
 - Hadron interactions, structure
 - Net-quantum-number fluctuations
 - (Forward) Ultra-soft photon production
 - BSM searches, e.g. ALPs

ALICE 3 Detector

Vertex tracker: excellent pointing resolution

- Heavy flavour mesons/baryons, multi-charm (yields, flow, correlations)
- HF rejection in dielectron, dimuon measurements
- Large acceptance tracker and PID
 - Correlation measurements
 - Rapidity dependence measurements

• TOF and RICH

- Hadron ID for heavy flavour decays, netbaryon measurements
- Electron ID (with ECAL) for dielectron radiation (and J/ψ)
- **Muon ID** down to p_T = 1.5 GeV: quarkonia, including P-wave (with ECAL), exotic hadrons
- **ECAL** (+conversions): photon detection for P-wave quarkonia, photon radiation, jets
- FCT: ultra-soft photons

- Existing Lol results for
 - Heavy flavour: 2 T solenoid + dipole
 - Dielectrons: 0.5 T
- Evaluate performance with updated magnet configuration and field strengths
 - 1 T solenoid
 - 2 T solenoid
- Quantify impact on heavy flavour
 - mass resolution (esp forward eta)
 - efficiency for decay daughter (esp strangeness tracking)
- Quantify impact on dielectrons
 - low mass acceptance: conversion tagging
 - PID coverage inner/outer TOF

Relative momentum resolution as function of η

racking system

BF

- Optimise/refine tracker layout incl. number and placement of layers
 - Barrel and endcap layers
- Strategy
 - ACTS to evaluate efficiency and resolution, produce tables for fast simulation
 - O² for matching algorithms and strangeness tracking
- Consider:
 - Efficiency and momentum resolution
 - Redundancy: robustness against failing chips/ladders
 - Strangeness tracking: efficiency for secondary tracks

- Refine forward PID detector setup
 - e.g. expect very high occupancy in forward RICH
- Evaluate/illustrate impact of RICH and TOF separately (scoping)
 - refine overlap/transition region
- Muon identification
 - update simulation with detector material, absorber, and matching
- Evaluate performance of ECAL for electron ID
 - for quarkonia
 - for thermal radiation

Example study: improve TOF resolution to cover electron ID up to 1.5 GeV would need 2 ps TOF resolution ⇒ need multiple technologies to cover range

Electromagnetic calorimetry

- Evaluate physics performance with only sampling calorimeter
 - initiative for PbWO₄ segment (Russian institutes) cu
- Implement ECAL response in simulation for electror.
- Evaluate performance impact of shower overlaps
- Jet and γ -jet performance projections

UW intro | Sep 19, 2022 | MvL, jkl

Long-term schedule

- 2023-25: selection of technologies, small-scale proof of concept prototypes (~ 25% of R&D funds)
- 2026-27: large-scale engineered prototypes (~75% of R&D funds)
 - → Technical Design Reports
- 2028-31: construction and testing
- 2032: contingency
- 2033-34: Preparation of cavern, installation

ALICE 3 Integration and Runing

Installation of ALICE 3 around nominal IP2

L3 magnet can remain, ALICE 3 to be installed inside Cryostat of ~8 m length, free bore radius 1.5 m, magnetic field configuration to be optimized

Running scenario:

6 running years with 1 month / year with heavy-ions

- 35 nb⁻¹ for Pb—Pb x 2.5 compared to Run 3 + 4
- Lighter species for higher luminosity under study pp at s = 14 TeV:
- 3 fb⁻¹ / year x 100 compared to Run 3 + 4

