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Effective-Number Theory, brief review
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Figure: Comparison of countings, (S), (B), (A)

! Our counting is realized by a funcion on vectors, and is a generalization of the "+" binary operation !

Comparison of standard counting (left) and effective counting (right).

(S) - Symmetry - count independent of the order of counting.

(B) - Boundary conditions - if the weights are same, then both countings give the same results.
(A) - Additivity (bottom two lines).



< Definitions )

Definition. Set of counting vectors:

C = UCp, where
Cnv=A{(c,c,..,en): d.c=N, ¢ >0}

Example.
N ones: (1,...,1) e C, (N —1) zeros: (0,...,0,N) € C

Effective numbers modeled by functions:
N:C—-R

Example.
N(,..,1) =N, N(0,..,0,N) =1

The bottom Example is actually the boundary conditions (B).



Definition. Effective numbers.

I is the set of effective number functions N,
where N': C — R have the following properties.
For all M, N, forall 1 <i,j <N, i#],

for all C = (c1,...,cn) € Cy, and for all B € Cpy

(S) Symmetry: N(..., ¢y e Gy o) = N(oot, Gy ooy Ciy v

(B2) Boundary values: N(0,...,0,N) =1, in Cy

(A) Additivity: N[C 8 B] = N[C] + N[B]

(C) Continuity of N restricted to Ciy with topology from RN
(M~) Monotonicity: 0 < e < min{c;,N — ¢}, ¢ <¢ =

N(..,ci—e,,gg+e,...) < N(.. Gy oy Gy -20)

These properties are independent.
The notation is consistent with the paper [3].

(M-) - the left side of the inequality is illustrated on the next page.



lllustration of Monotonicity (M-)
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Figure: Cumulation, (M), (C) (graphed ¢; vs. i)

Cumulation and Continuity - these properties do not have a standard analog.

(M) - Monotonicity - the state with more cumulated weights has lower count (compare top left vs. top right).
(C) - Continuity - the count depends continuously on the weight change.

The count for the cumulated state at bottom right is 3.



( Effective Counting Theory - Results )

Theorem 1. Separability.
N[(e1, c2,...,en)] = don(c) for some n:[0,00) = R
The function n(x) is called generating function for N[C].
Theorem 2. Unique continuous.
(a) Vt 3 unique continuous n(x) with n(0) =t
(b) All continuous n(x) are concave.
Theorem 3. Unique bounded.
(a) 3 unique bounded n(x)
(b) This bounded n(x) is continuous.
Theorem 4. Minimum exists.
N, VNeM VCel N,C] < N[C]



( Applications )

weights ¢ — p; = i
g i pi = N
N(, G, ) — N(...7p,', )

probabilities

In the past (ad hoc) Bell and Dean [1]

[Q] “How many atoms do vibrations effectively spread over?”

Participation number: ﬁ = 2o c?
g}Pros
(S). (B). (C), (M7)
Cons

$  (A) is not satisfied

Moreover, it is also not multiplicative and so it doesn’t scale well.



Quantum Mechanics
e effective count of quantum states, [3]:

[Q] “How many basis states |i) is the system described by |1 )
effectively in?”, see [3]

[A] IfP:(p17p2,“~7pN) y Pi :|<I|1/}>
assigned to state |1 ) and basis {|i)} by quantum mechanics, then

2 s the probability vector

the system described by |1 ) is effectively in at least N, [C] states
from {|i)}, where C = NP = (c,¢,...,cn) and
NL[C] = D nu(ci), ne(c) = min{c, 1}.

e new measure of uncertainty, [5]

e new measure of entanglement, [5]

e quantum computing - decoherence

Statistical Physics (entropy, [here])
Fractals (dimension, multidimensionality, [6])
Transport phenomena (Anderson localization, [7])

Biological Sciences (diversity - counting species)
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Question
{Since this was very brief,

are there any questions before we continue?




Entropy

Boltzmann entropy has been used with a great success but
there are situations where it doesn't work.

Here are some examples in high energy physics.

e In high energy collisions of an electron with a positron, annihilation occurs and,
immediately after, typically two or three hadronic jets are produced. The probability
distribution of their transverse momenta is non-Boltzmannian. This phenomenon has
defied theoreticians since several decades, particularly since Hagedorn [5][6].

e The distribution of energies E of cosmic rays arriving on Earth has been measured
for decades. This distribution is very far from exponential [5].

e Solar neutrino problem can be caused in part by the Boltzmann statistics used in
Solar Standard Model (SSM). There is no good reason why it should be applicable
there [5][7].

e The anomalous diffusion of a charm quark in a quark-gluon plasma has been
analyzed by Walton and Rafelski [5][8] through both nonextensive statistical
mechanical arguments and quantum chromodynamics. The results coincide for Tsallis
entropy Sq with q = 1.114.

Question
—& What is Entropy?




Similarity of Entropy and Effective numbers:

(S) Symmetry: N(...,¢i, ... Gy ...) = N(o.o, G, oo, iy o)

(B) Boundary values: N(0,...,0,N) =1, in Cy

7?7  (A) Additivity: N[CEB B] =N[C]+N[B] 7

(C) Continuity of N restricted to Ciy with topology from RN
(M) Monotonicity: 0 < e < min{c;,N — ¢}, ¢;<¢ =

N(.nci—e,gg+e,...) SN(y Gy oy Gy -on)

Boltzmann Entropy

S(P)=—>_;piln(p;) , where P = (p1,p2,..., pn)
Its additivity differs from (A).

If pj-s are constant S = k In(W).
Need to transfer from  — 37, piIn(p;)) to — fOL pIn(p)dx.

Note: Additivity vs. Extensivity.



Maximum Entropy Principle

Equilibrium states are those with maximal achievable entropy.

In standard statistical mechanics:

Step 1. Let S(P) is the Boltzmann-Gibbs Entropy.

Step 2. Find Py that maximizes S(P) and
identifies the equilibrum state.

Step 3. Use S(Py) to find other thermodynamic parameters,
e.g. free energy F, internal energy U, specific heat C, ...

We will concentrate on Step 2.



Boltzmann Entropy Equilibria - simple case

Typically we have a system with constraints.
We start with the necessary constraint:

Maximize S(P) = — [ PIn(P)dx
Constraint  w(P) = fOL Pdx =1

No physical constraint yet.

P(x) =7
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Figure: 101, 104
Note, that there cannot be any §-functions in P(x) since — fOL S(x—xp) In(8(x—xg))dx = —o0

On graphs, we denote the part of P(x) without §-functions as p(x) and §-functions are marked separately.
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p(z) )= —p In(p)
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We arrived to the standard result - the uniform distribution.



( Boltzmann Entropy Equilibra - simple case - Result )

Maximize S(P) = — [ PIn(P)dx
Constraint  w(P) = fOL Pdx =1

No physical constraint yet.

The solution is uniform on all the available space, P(x) =

~=

Question
—& What is the solution for Effective Counting Entropy?




( Effective Counting Entropy )

Effective number of states is N,[P] =), min{p;, 1},

where P = (p1, ..., pn) in the discrete case, [4]

and the Effective Volume is V,[P] = [ min{V P(x),1}dx,
where P = P(x) in the continuous case, [3][10].

Since we can count states with different probabilities, we define
the Entropy directly as follows:

Definition. Effective Counting Entropy:
8:[P] = In(N.[P])
8.[P] = In(V.[P])

Theorem. Super-additivity over product of independent sets
of states (Pus,; = Pa; Ps,):  S«[A X B] > 8.[A] + 8.[B]



( Effective Counting Entropy Equilibra - simple case )

Maximize V[P] = [/ min{LP(x),1}dx
Constraint  w(P) = fOL P(x)dx =1

No physical constraint yet.

P(x) =?
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Effective Counting Entropy - simple case - Result

We obtained the same result as in the case of Boltzmann
Entropy - the uniform distribution:

Maximize S(P) = — [ PIn(P)dx
Constraint  w(P) = fOL Pdx =1

No physical constraint yet.

~i=

The solution is uniform on all the available space, P(x) =



( Boltzmann Entropy Equilibra - generic case )

Maximize S[P] = — [ P(x) In(P(x))dx
Constraint  w(P) = [i P(x)dx = 1

Physical Constraint y(P) = fOLx P(x)dx = yo

P(x) =?



p(z)

Figure: 107, 108

Note, that there cannot be any delta functions in P(x) since — fOL S(x — xg) In(6(x — xg))dx = —oo.



Figure: 109
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Discontinuities are similar.

Consequently if S[P] is maximized,
then P(x) is monotone and continuous.
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Boltzmann Entropy Equilibria - generic - Result

To finish the solution faster we can use variations and find the
standard exponential results:

p(x), ¥y <y p(x), ¥y >y

0 L 0 L

Truncated exponentials.

Question
—& What is the solution for Effective Counting Entropy?




( Effective Counting Entropy Equilibria - generic )

Maximize V[P] = [ min{LP(x),1}dx
Constraint  w(P) = [i P(x)dx = 1

Physical Constraint y(P) = fOLx P(x)dx = yo

P(x) =?



F(l‘(.’l”/\ {& 5
@ &

9 J(x-L)
! 1
e W | Y=y,
| | w-r—'
| | \}(P) ho Qﬁ-_fc‘q—
| |
d Llr T
(V%
Figure: 116



If y(P)= fOLx P(x)dx =y > yo, then we need to change
P(x) so that y is lowered down to yp.

‘nm VO Y>y.

~\—

Figure: 117

To better see what is happening here, let's use an analogy.

Suppose p(x) = #of the items with a price equal to x.
Then x p(x) = the cost of the items with the price equal to x.

And fﬂl‘ x p(x)dx = the total cost of all items (max. price is L).

Then to lower the cost we need to exchange the most expensive items for free ones.
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Comparison of generic Equilibria for
Effective Counting and Boltzmann Entropies:
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Case yp < %



Comparison of generic Equilibria for
Effective Counting and Boltzmann Entropies:
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Case yp > %, and for yp = é it is the uniform solution, which is same for both.

On the next slide, we give the solution algebraically.



( Effective Counting Entropy - generic - Result )

Maximize V[P] = [ min{LP(x),1}dx

Constraint  w(P) = [i P(x)dx = 1

Physical Constraint y(P) = fOLx P(x)dx = yo

For yo <5 the solution is P(x) = p(x)+bod(x), see slide 34,

where ) : |
_ I X € 07L0 o 1 2y
P(X)—{Q XG(LO,L]’LO_m’andbO_l \/ 22

For yo > % the solution is flipped around x = é see slide 35,



Effective Counting Entropy in dimension d

Figure: 120

d-dimensional cubes.



( Effective Counting Entropy in dimension d )

- [_§’ 5
We can glue the (d—1)-dimensional sides of this cube to get flat d-torus or flat
d-sphere and the calculations will be same.

A(x) = countable sum of d—functions

Consider probability distribution P(x) = p(x) + A(x) on C

Maximize V[P] = [cmin{L? P(x),1} dx < L7
Constraint ~ w(P) = [ P(x)dx =1

Physical Constraint  y(P) = [ |x| P(x) dx = yp

P(x) =7



Figure A. (2D flat torus)

Any J-function can be 'moved’ to
A and B as it was done before, see
Fig. 116. on slide 31 (identification
of edges and vertices as depicted).

B

Yo
oy,

[
Y
@

Figure: A

Figure: 121



of

p(x), |x|=r

i

&
2D~

Figure: 126

sheld | dim <d-1



H‘(r) J'-\

e
J,!z(r‘ d=2
mLy----------
!
; r
' : R= {Mz’[

Figure: 122, 123



H.()

Figure: 124



Rotationally Symmetric Solution
Q(r):q(r)—l-aod(r)—i-boé(r—R), R = @

R
Maximize V4(Q) ::/ min{Q(r), Hy(r)} dr < L9
0
R
Constraint  wy(Q) ::/ Q(r)dr = L
0
1

R
Physical Constraint y4(Q) := Ld/ r Q(r) dr
0

Q(r) =2
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Effective Counting Entropy in dim d - Results

The solution is P(x) = —2X)_ " \where Q(r) is depicted below.
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Case when yy < fOR rHg(r)dr.



Effective Counting Entropy in dim d - Results
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Case when yg > fOR rHg(r)dr.

If yo = fOR rHy(r) dr, then Q(r) = Hy(r), which means that the solution is uniform P(x) = Lid



Figure 45. 2D flat torus, a solution
for small yp has a J-function at A
and a step function at the gray circle
(identification of edges and vertices
as depicted).

Figure 46. 2D flat torus, a solution
for large yp has a d-function at A and
a step function at the gray area.
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Figure 47. 2D flat sphere, a solution
for small yp has a d-function at B and
a step function at the gray circle.

Figure 48. 2D flat sphere, a solution
for large yp has a d-function at B and
a step function at the gray area.
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( Conclusion. }

Boltzmann Effective Counting
SP) =3, piIn(pi) Nu[P] = 22 min{N p;, 1}
S(P) = — [ PIn(P)dx Maximize §,[P] = In([; min{LP,1}dx)
< x> is fixed. if <xk> is fixed.
P(x) = truncated Results  P(x)=step function + ()
exponential

We have another Tool

in our Toolbox of Entropies!
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