# Effective Counting Entropy $(\mu$ -Entropy)

Robert Mendris, SSU, with Ivan Horváth, UKY & UJF April, 2023



#### Effective-Number Theory, brief review



Figure: Comparison of countings, (S), (B), (A)

 $! \ \ \text{Our counting is realized by a } \textbf{function} \ \ \text{on vectors, and is a generalization of the } "+" \ \ \text{binary operation } !$ 

Comparison of standard counting (left) and effective counting (right).

- (S) Symmetry count independent of the order of counting.
- (B) Boundary conditions if the weights are same, then both countings give the same results.
- (A) Additivity (bottom two lines).



#### **Definitions**

## **Definition.** Set of counting vectors:

$$C = \bigcup C_N$$
, where  $C_N = \{(c_1, c_2, ..., c_N) : \sum c_i = N, c_i \geq 0\}$ 

#### Example.

N ones: 
$$(1,...,1) \in \mathcal{C}$$
,  $(N-1)$  zeros:  $(0,...,0,N) \in \mathcal{C}$ 

## Effective numbers modeled by functions:

$$\mathcal{N}:\,\mathcal{C}\to\mathbb{R}$$

#### Example.

$$\mathcal{N}(1,...,1) = N, \quad \mathcal{N}(0,...,0,N) = 1$$

The bottom Example is actually the boundary conditions (B).

#### **Definition.** *Effective numbers.*

 $\mathfrak N$  is the set of effective number functions  $\mathfrak N$ , where  $\mathfrak N: \mathcal C \to \mathbb R$  have the following properties. For all M, N, for all  $1 \leq i,j \leq N, \ i \neq j$ , for all  $C = (c_1,...,c_N) \in \mathcal C_N$ , and for all  $B \in \mathcal C_M$ 

**(S)** Symmetry: 
$$\mathbb{N}(..., c_i, ..., c_j, ...) = \mathbb{N}(..., c_j, ..., c_i, ...)$$

- **(B2)** Boundary values:  $\mathcal{N}(0,...,0,N)=1$ , in  $\mathcal{C}_N$
- **(A)** Additivity:  $\mathcal{N}[C \boxplus B] = \mathcal{N}[C] + \mathcal{N}[B]$
- **(C)** Continuity of  $\mathbb{N}$  restricted to  $\mathcal{C}_N$  with topology from  $\mathbb{R}^N$

(M<sup>-</sup>) Monotonicity: 
$$0 < \varepsilon \le \min\{c_i, N - c_j\}, c_i \le c_j \Rightarrow \mathcal{N}(..., c_i - \varepsilon, ..., c_j + \varepsilon, ...) \le \mathcal{N}(..., c_i, ..., c_j, ...)$$

These properties are independent.

The notation is consistent with the paper [3].

(M-) - the left side of the inequality is illustrated on the next page.

# Illustration of Monotonicity (M-)



Figure: Cumulation, (M), (C) (graphed  $c_i$  vs. i)

Cumulation and Continuity - these properties do not have a standard analog.

- (M) Monotonicity the state with more cumulated weights has lower count (compare top left vs. top right).
- (C) Continuity the count depends continuously on the weight change.

The count for the cumulated state at bottom right is 3.

# **Effective Counting Theory - Results**

# **Theorem 1.** Separability.

$$\mathbb{N}[(c_1,c_2,\ldots,c_N)] = \sum \mathfrak{n}(c_i)$$
 for some  $\mathfrak{n}:[0,\infty) o \mathbb{R}$ 

The function  $\mathfrak{n}(x)$  is called generating function for  $\mathfrak{N}[C]$ .

#### Theorem 2. Unique continuous.

- (a)  $\forall t \exists$  unique continuous  $\mathfrak{n}(x)$  with  $\mathfrak{n}(0) = t$
- (**b**) All continuous  $\mathfrak{n}(x)$  are concave.

# **Theorem 3.** Unique bounded.

- (a)  $\exists$  unique bounded  $\mathfrak{n}(x)$
- (**b**) This bounded  $\mathfrak{n}(x)$  is continuous.

#### Theorem 4. Minimum exists.

$$\exists \mathcal{N}_{\star} \quad \forall \, \mathcal{N} \in \mathfrak{N} \quad \forall \, C \in \mathcal{C} \quad \mathcal{N}_{\star}[C] \leq \mathcal{N}[C]$$

# **Applications**

weights 
$$c_i \longrightarrow p_i = \frac{c_i}{N}$$
 probabilities  $\mathbb{N}(..., c_i, ...) \longrightarrow \mathbb{N}(..., p_i, ...)$ 

In the past (ad hoc) Bell and Dean [1]

[Q] "How many atoms do vibrations effectively spread over?"

Participation number: 
$$\frac{1}{N_p[C]} = \frac{1}{N^2} \sum c_i^2$$



(A) is not satisfied

Moreover, it is also not multiplicative and so it doesn't scale well.

#### **Quantum Mechanics**

- effective count of quantum states, [3]:
  - [Q] "How many basis states  $|i\rangle$  is the system described by  $|\psi\rangle$  effectively in?", see [3]
  - [A] If  $P = (p_1, p_2, \ldots, p_N)$ ,  $p_i = |\langle i | \psi \rangle|^2$ , is the probability vector assigned to state  $|\psi\rangle$  and basis  $\{|i\rangle\}$  by quantum mechanics, then the system described by  $|\psi\rangle$  is effectively in at least  $\mathbb{N}_{\star}[C]$  states from  $\{|i\rangle\}$ , where  $C = NP = (c_1, c_2, \ldots, c_N)$  and  $\mathbb{N}_{\star}[C] = \sum_i \mathfrak{n}_{\star}(c_i)$ ,  $\mathfrak{n}_{\star}(c) = \min\{c, 1\}$ .
- new measure of uncertainty, [5]
- new measure of entanglement, [5]
- quantum computing decoherence

Statistical Physics (entropy, [here])

Fractals (dimension, multidimensionality, [6])

Transport phenomena (Anderson localization, [7])

Biological Sciences (diversity - counting species)



# References

#### for Effective Number Theory:

[1] R.J. Bell and P. Dean,

Disc. Faraday Soc. **50**, 55-61 (1970).

[2] I. Horváth and R. Mendris,

"A Different Angle on Quantum Uncertainty",

Proceedings 13(1), 8 (2019), http://arxiv.org/abs/1907.01606

[3] I. Horváth and R. Mendris,

"Counting the Identities of a Quantum State",

Entropy 22, 1273 (2020), http://arxiv.org/abs/1807.03995

[4] A.W. Marshall, I. Olkin, B.C. Arnold,

"Inequalities: Theory of Majorization and Its Applications",

Springer Series in Statistics, Springer-Verlag (2011)

[5] I. Horváth, "The Measure Aspect of Quantum Uncertainty,

of Entanglement, and the Associated Entropies",

Quantum Rep. 3(3) (2021), 534-548, https://arxiv.org/abs/1809.07249

[6] Ivan Horváth, Peter Markoš and Robert Mendris

Counting-Based Effective Dimension and Discrete Regularizations

Entropy 25(3), 482 (2023), https://arxiv.org/abs/2205.11520

[7] Ivan Horváth and Peter Markoš

Super-Universality in Anderson Localization

Phys. Rev. Lett. 129, 106601 (2022), https://arxiv.org/abs/2110.11266

## Question

Since this was very brief, are there any questions before we continue?

## Entropy

# Boltzmann entropy has been used with a great success but there are situations where it doesn't work.

Here are some examples in high energy physics.

- In high energy collisions of an electron with a positron, annihilation occurs and, immediately after, typically two or three hadronic jets are produced. The probability distribution of their transverse momenta is non-Boltzmannian. This phenomenon has defied theoreticians since several decades, particularly since Hagedorn [5][6].
- The distribution of energies E of cosmic rays arriving on Earth has been measured for decades. This distribution is very far from exponential [5].
- Solar neutrino problem can be caused in part by the Boltzmann statistics used in Solar Standard Model (SSM). There is no good reason why it should be applicable there [5][7].
- $\bullet$  The anomalous diffusion of a charm quark in a quark-gluon plasma has been analyzed by Walton and Rafelski [5][8] through both nonextensive statistical mechanical arguments and quantum chromodynamics. The results coincide for Tsallis entropy  $S_q$  with q = 1.114.

#### Question

**◆** What is Entropy?

# Similarity of Entropy and Effective numbers:

- **(S)** Symmetry:  $\mathbb{N}(..., c_i, ..., c_j, ...) = \mathbb{N}(..., c_j, ..., c_i, ...)$
- **(B)** Boundary values:  $\mathcal{N}(0,...,0,N) = 1$ , in  $\mathcal{C}_N$ 
  - ?? **(A)** Additivity:  $\mathcal{N}[C \boxplus B] = \mathcal{N}[C] + \mathcal{N}[B]$  ??
- **(C)** Continuity of  $\mathbb{N}$  restricted to  $\mathcal{C}_N$  with topology from  $\mathbb{R}^N$
- (M) Monotonicity:  $0 < \varepsilon \le \min\{c_i, N c_j\}, c_i \le c_j \Rightarrow \mathcal{N}(..., c_i \varepsilon, ..., c_j + \varepsilon, ...) \le \mathcal{N}(..., c_i, ..., c_j, ...)$

## **Boltzmann Entropy**

$$S(P) = -\sum_{i} p_{i} \ln(p_{i})$$
 , where  $P = (p_{1}, p_{2}, ..., p_{N})$ 

Its additivity differs from (A).

If  $p_i$ -s are constant  $S = k \ln(W)$ . Need to transfer from  $-\sum_i p_i \ln(p_i)$  to  $-\int_0^L p \ln(p) dx$ .

Note: Additivity vs. Extensivity.



# **Maximum Entropy Principle**

Equilibrium states are those with maximal achievable entropy.

In standard statistical mechanics:

- **Step 1.** Let S(P) is the Boltzmann-Gibbs Entropy.
- **Step 2.** Find  $P_0$  that maximizes S(P) and identifies the equilibrum state.
- **Step 3.** Use  $S(P_0)$  to find other thermodynamic parameters, e.g. free energy F, internal energy U, specific heat C, ...

We will concentrate on Step 2.

# **Boltzmann Entropy Equilibria - simple case**

Typically we have a system with constraints. We start with the necessary constraint:

**Maximize** 
$$S(P) = -\int_0^L P \ln(P) dx$$

Constraint 
$$w(P) = \int_0^L P dx = 1$$

No physical constraint yet.

$$P(x) = ?$$



Figure: 101, 104

Note, that there cannot be any  $\delta$ -functions in P(x) since  $-\int_0^L \delta(x-x_0) \ln(\delta(x-x_0)) dx = -\infty$  On graphs, we denote the part of P(x) without  $\delta$ -functions as p(x) and  $\delta$ -functions are marked separately.





Figure: 103 Figure: 105





Figure: 106

Figure: 127

We arrived to the standard result - the uniform distribution.

# **Boltzmann Entropy Equilibra - simple case - Result**

**Maximize** 
$$S(P) = -\int_0^L P \ln(P) dx$$

Constraint 
$$w(P) = \int_0^L P dx = 1$$

No physical constraint yet.

The solution is uniform on all the available space,  $P(x) = \frac{1}{L}$ .

#### Question



# **Effective Counting Entropy**

Effective number of states is  $\mathcal{N}_*[P] = \sum_i \min\{p_i, 1\}$ , where  $P = (p_1, ..., p_N)$  in the discrete case, [4] and the Effective Volume is  $\mathcal{V}_*[P] = \int_{\Omega} \min\{V P(\mathbf{x}), 1\} d\mathbf{x}$ , where  $P = P(\mathbf{x})$  in the continuous case, [3][10].

Since we can count states with different probabilities, we define the Entropy directly as follows:

**Definition.** *Effective Counting Entropy:* 

$$\mathbb{S}_*[P] = \mathsf{In}(\mathbb{N}_*[P])$$

$$\mathbb{S}_*[P] = \ln(\mathcal{V}_*[P])$$

**Theorem.** Super-additivity over product of independent sets of states  $(p_{AB,i,j} = p_{A,i}, p_{B,i})$ :  $S_*[A \times B] \ge S_*[A] + S_*[B]$ 



# **Effective Counting Entropy Equilibra - simple case**

**Maximize** 
$$\mathcal{V}[P] = \int_0^L \min\{LP(x), 1\} dx$$

Constraint 
$$w(P) = \int_0^L P(x) dx = 1$$

No physical constraint yet.

$$P(x) = ?$$



Figure: 114, 115

# **Effective Counting Entropy - simple case - Result**

We obtained the same result as in the case of Boltzmann Entropy - the uniform distribution:

**Maximize** 
$$S(P) = -\int_0^L P \ln(P) dx$$

Constraint 
$$w(P) = \int_0^L P dx = 1$$

No physical constraint yet.

The solution is uniform on all the available space,  $P(x) = \frac{1}{L}$ .



# **Boltzmann Entropy Equilibra - generic case**

**Maximize** 
$$S[P] = -\int_0^L P(x) \ln(P(x)) dx$$

Constraint 
$$w(P) = \int_0^L P(x) dx = 1$$

**Physical Constraint** 
$$y(P) = \int_0^L x P(x) dx = y_0$$

$$P(x) = ?$$



Figure: 107, 108



Figure: 109



Figure: 110



If Not Monotone.

Figure: 111

Discontinuities are similar. Consequently if S[P] is maximized, then P(x) is monotone and continuous.



Figure: 112

# **Boltzmann Entropy Equilibria - generic - Result**

To finish the solution faster we can use variations and find the standard exponential results:



Truncated exponentials.

#### Question

➡ What is the solution for Effective Counting Entropy?

# **Effective Counting Entropy Equilibria - generic**

**Maximize** 
$$\mathcal{V}[P] = \int_0^L \min\{LP(x), 1\} dx$$

Constraint 
$$w(P) = \int_0^L P(x) dx = 1$$

**Physical Constraint** 
$$y(P) = \int_0^L x P(x) dx = y_0$$

$$P(x) = ?$$



Figure: 116

If  $y(P) = \int_0^L x P(x) dx = y > y_0$ , then we need to change P(x) so that y is lowered down to  $y_0$ .



Figure: 117

To better see what is happening here, let's use an analogy.

Suppose p(x)=# of the items with a price equal to x. Then  $x\,p(x)=$  the cost of the items with the price equal to x. And  $\int_0^L x\,p(x)dx=$  the total cost of all items (max. price is L).

Then to lower the cost we need to exchange the most expensive items for free ones.





Figure: 118

# Comparison of generic Equilibria for Effective Counting and Boltzmann Entropies:



Figure: 119

Case  $y_0 < \frac{L}{2}$ .

# Comparison of generic Equilibria for Effective Counting and Boltzmann Entropies:



Figure: 125

Case  $y_0 > \frac{L}{2}$ , and for  $y_0 = \frac{L}{2}$  it is the uniform solution, which is same for both.

On the next slide, we give the solution algebraically.

# Effective Counting Entropy - generic - Result

**Maximize** 
$$\mathcal{V}[P] = \int_0^L \min\{LP(x), 1\} dx$$

Constraint 
$$w(P) = \int_0^L P(x) dx = 1$$

**Physical Constraint** 
$$y(P) = \int_0^L x P(x) dx = y_0$$

For  $y_0 \le \frac{L}{2}$  the solution is  $P(x) = p(x) + b_0 \delta(x)$ , see slide 34, where

$$p(x) = \begin{cases} \frac{1}{L}, & x \in [0, L_0] \\ 0, & x \in (L_0, L] \end{cases}, L_0 = \sqrt{2Ly_0}, \text{ and } b_0 = 1 - \sqrt{\frac{2y_0}{L}}.$$

For  $y_0 > \frac{L}{2}$  the solution is flipped around  $x = \frac{L}{2}$ , see slide 35,



# Effective Counting Entropy in dimension d



Figure: 120

### **Effective Counting Entropy in dimension d**

$$C = \left[ -\frac{L}{2}, \frac{L}{2} \right]^d$$

We can glue the (d-1)-dimensional sides of this cube to get flat d-torus or flat d-sphere and the calculations will be same.

$$\Delta(\mathbf{x}) = \text{countable sum of } \delta - \text{functions}$$

Consider probability distribution  $P(\mathbf{x}) = p(\mathbf{x}) + \Delta(\mathbf{x})$  on C

**Maximize** 
$$\mathcal{V}[P] = \int_C \min\{L^d P(\mathbf{x}), 1\} d\mathbf{x} \leq L^d$$

Constraint 
$$w(P) = \int_C P(\mathbf{x}) d\mathbf{x} = 1$$

**Physical Constraint** 
$$y(P) = \int_C |\mathbf{x}| P(\mathbf{x}) d\mathbf{x} = y_0$$

$$P(\mathbf{x}) = ?$$

#### Figure A. (2D flat torus)

Any  $\delta$ -function can be 'moved' to A and B as it was done before, see Fig. 116. on slide 31 (identification of edges and vertices as depicted).







Figure: A

Figure: 121



Figure: 126



Figure: 122, 123



Figure: 124

### **Rotationally Symmetric Solution**

$$Q(r) = q(r) + a_0 \delta(r) + b_0 \delta(r - R), \quad R = \frac{\sqrt{d}L}{2}$$

Maximize 
$$V_d(Q) := \int_0^R \min\{Q(r), H_d(r)\} dr \le L^d$$
  
Constraint  $w_d(Q) := \int_0^R Q(r)dr = L^d$ 

**Physical Constraint** 
$$y_d(Q) := \frac{1}{L^d} \int_0^R r \, Q(r) \, dr$$

$$Q(r) = ?$$



Figure: 128, 129

#### **Effective Counting Entropy in dim d - Results**

The solution is  $P(\mathbf{x}) = \frac{Q(|\mathbf{x}|)}{L^d H_d(|\mathbf{x}|)}$ , where Q(r) is depicted below.



Figure: 130

### **Effective Counting Entropy in dim d - Results**



Case when  $y_0 > \int_0^R r H_d(r) dr$ .

If  $y_0 = \int_0^R r \, H_d(r) \, dr$ , then  $Q(r) = H_d(r)$ , which means that the solution is uniform  $P(\mathbf{x}) = \frac{1}{L^d}$ .

**Figure 45.** 2D flat torus, a solution for small  $y_0$  has a  $\delta$ -function at A and a step function at the gray circle (identification of edges and vertices as depicted).

**Figure 46.** 2D flat torus, a solution for large  $y_0$  has a  $\delta$ -function at A and

a step function at the gray area.

Figure: 46

**Figure 47.** 2D flat sphere, a solution for small  $y_0$  has a  $\delta$ -function at B and a step function at the gray circle.

**Figure 48.** 2D flat sphere, a solution for large  $y_0$  has a  $\delta$ -function at B and a step function at the gray area.





Figure: 47



#### Conclusion.

BoltzmannEffective Counting
$$S(P) = \sum_i p_i \ln(p_i)$$
 $\mathcal{N}_*[P] = \sum_i \min\{N p_i, 1\}$  $S(P) = -\int_0^L P \ln(P) dx$ Maximize $\mathcal{S}_*[P] = \ln(\int_0^L \min\{L P, 1\} dx)$  $< x >$  is fixed.if $< x^k >$  is fixed. $P(x) =$  truncated exponentialResults $P(x) =$  step function  $+ \delta()$ 

# We have another Tool in our Toolbox of Entropies!

## References

[1] L. Boltzmann,

On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium, Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877 (Wien. Ber., 76:373-435).

[2] C. Tsallis,

The Nonadditive Entropy  $S_q$  and Its Applications in Physics and Elsewhere: Some Remarks, Entropy **13**, 1765-1804 (2011), https://doi.org/10.3390/e13101765

[3] I. Horváth and R. Mendris,
 "A Different Angle on Quantum Uncertainty",
 Proceedings 13(1), 8 (2019), http://arxiv.org/abs/1907.01606

[4] I. Horváth and R. Mendris, "Counting the Identities of a Quantum State", Entropy 22, 1273 (2020), http://arxiv.org/abs/1807.03995

## References

 [5] C. Tsallis and E. P. Borges, *Nonextensive statistical mechanics - Applications to nuclear and high energy physics*, https://arxiv.org/abs/cond-mat/0301521

[6] R. Hagedorn,N. Cim. 3, 147 (1965).

[7] G. Kaniadakis, A. Lavagno and P. Quarati, Phys. Lett. B 369, 308 (1996);

[8] D.B. Walton and J. Rafelski, Phys. Rev. Lett. 84, 31 (2000).

[9] K. Falconer,
 Fractal geometry - mathematical foundations and applications,
 (Wiley, 1990) pp. I–XXII, 1–288.

[10] I. Horváth, "The Measure Aspect of Quantum Uncertainty, of Entanglement, and the Associated Entropies", Quantum Rep. 3(3) (2021), 534-548, https://arxiv.org/abs/1809.07249 Thank you!