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Abstract: There is a common practice to calculate orbital trajectories of space objects like satellites and
space debris using Two-Line Element Sets (TLEs). However, TLEs provide rather coarse parameters
for fine orbit computation and their precision varies with age of their issue and position of the satellite.
The paper evaluates such induced position determination error using the comparison of a position
calculated from TLE data for a small CubeSat class satellite and a position obtained from the on-board
custom GPS receiver that is a part of such satellite payload. The analyses of the impact of satellite
position at the orbit, i.e., a dependency of position error on satellite geographical latitude, and impact
of the ageing of TLE data in frame of position and velocity vector were made. There was shown that
use of TLE data can bring some significant errors in calculation of predicted satellite position which
can affect performance and efficiency of some related tasks like steering the ground station antenna
for communication with the satellite or planning the satellites operations namely for the classes of
small and amateur satellites.

Keywords: LEO satellite orbit; two-line element set; simplified perturbations model

1. Introduction

The NASA /NORAD Two-Line Element Set (TLE) is a de facto standard for the orbital
elements description of a near-earth orbiting spacecraft (or space debris). The parameters
were originally used for objects with orbital periods less than 225 min [1], and later extended
to medium Earth orbits (MEO) and geostationary orbits (GEO).

The TLEs then become a usual data source for the algorithm of the satellite state
vector calculations using simplified perturbations models (SGP, SGP4, SDP4, SGP8, and
SDP8) [2]. TLE data are measured by a Space Surveillance Network (SSN) [3,4] and have
been provided by the US government since 1970.

Since the satellites’ TLE is publicly available, e.g., in [5], and a number of professional
and semi-professional software packages [6] or source codes exist for Matlab, C, FORTRAN,
etc. [7,8], the TLE elements are widely used for many purposes, e.g., steering setup of
the antennas for communication with small satellites, space experiment planning, and for
processing and interpretation of scientific data measured by small satellites.

The precision of the position determination using TLE has been investigated by many
researchers. The GOCE LEO satellite case was investigated in [9] on its orbit below 300 km,
where most pieces of space debris are located. A position error lower than 2.5 km for the
initial epoch time was observed; however, due to the observed rapid time degradation of
the TLE precision, the error increased to 100 km in the frame of one week.

The results of similar research with Flock 1, Flock 1B, and Flock 1D CubeSat constella-
tion of 3U are reported in [10], and another investigation of TLE precision for the Iridium
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Figure 2. Block scheme (l):%glljffczk}l?l%k scheme of Lucky 7.
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position fix after switching on the receiver [17].

2.2. piNAV GPS Receiver

The GPS receiver piNAV (Figure 3) was developed purposefully for small satellite
navigation at LEO orbits. The receiver is designed as a software receiver, where the digital
signal and data processing runs in FPGA and microcontroller (Figure 4). The Lucky-7 sat-
ellite is equipped with a second version of the receiver that is augmented with the signal
acquisition unit that considerably shortens the cold start to the receiver, i.e., the time to
first position fix after switching on the receiver [18].
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Figure 3. piINAV GPS receiver.
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3. Results and Discussion

The measurement campaign ran in summer 2021, as seen in Table 1. There w
collected sets (TLE1-TLE4) of the TLE data, as described in Table 2. TREEpoch of

set was 36 days before the experiment, while the last set was generated during th
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TABION, Eﬁﬁéﬁiﬁ@iﬂ $yghemeasurements with no GPS reference from the processing. We

also excluded GPS measurements with poor geometry of the navigation satellites, i.e., with

a high valiexgs &isitien Dilution Of Pigniei¢MBRIFed4Julian Day) Time UTC
Table 1. Expguerggrwgﬁgég 26,153.638952 9 August 2021 15:20:
end 26,155.02235 11 August 2021 00:32
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inmni 26,153.638952 9 August 2021 15:20:05.484
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Figure 6 displays the dependency of the position error magnitude on the
latitude. The position error is the highest near the equator and it decreases wit!
crease in latitude.
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The radius error [rGPS| — |[fTLE| is drawn in Figures 11 and 12. We can again observe

an error increase with the age of the TLE data. The radius error dependency on the latitude,

ich creates closed cyclic curve that has area increasing with the age of ephemeris, is very

Sensers 2023, 22, x FOR PEER REV@' interesting. Likely the errors in North-South part of the orbit are different to the errors in
the other part.
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4. C i
on'?ﬁ(selgﬁeﬁocity error for TLE1 seems too hi%Ill. From Fi%%resl 15-17, it is evider

.The paper analyzed the calculations precision of the position dnd velocity vectars
B T R R R M SRR (R R
of the age of TLE to the precision. The novelty of the research can be seen in the analyses of
the precision not only for the satellite position vector, but also for the velocity vector.

The next contribution of the paper was the investigation of the dependency of position
precision on the satellite’s geographical latitude. This allowed us to state that the error of
the position vector for the evaluated case has the largest values in the equatorial regions,
while the error of the velocity is the smallest in same regions and vice versa.

The obtained precision of the position vector is comparable with other studies [9,10,18,19].
The precision of the velocity vector cannot be compared as these data were not available
from previous studies.

The results can be quite well applied in the planning and processing of the satellite
experiments and for the control of the ground antenna operations for communication
with the satellites in cases where TLE data are the sole source for satellite position and
velocity estimates.
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