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A B S T R A C T   

Among severe meteorological hazards, lightning is considered one of the most dangerous; however, its forecast is 
difficult because the formation of lightning is the result of processes in the clouds that are difficult to model 
accurately. In this study, we predict lightning activity using the Lightning Potential Index (LPI), which is quite 
often used to determine areas with expected lightning activity, and analyse its spatial and temporal character
istics. Specifically, we performed simulations of LPI (15 min values) using the COSMO NWP model for 10 
selected thunderstorm events of 2018 in Central Europe. We used the model runs with 1- and 2-moment cloud 
microphysics and with a lead time of 12 h presented in our previous study, while in this study we performed 
deeper analyses and verified the 15 min LPI values in space and time using ground-based observations of 
lightning. Our results showed that 2-moment cloud microphysics provide better LPI forecasts which confirms the 
suggestion of our previous study. The distribution of predicted lightning activity related to the model orography 
was examined and found consistent with the occurrence of recorded lightning discharges. The Fraction Skill 
Score analysis revealed that for 2-moment cloud microphysics a skilful forecast was reached at smaller scales 
than for 1-moment microphysics, namely at scales around 90 km for LPI thresholds 30, 40 and 50 Jkg− 1. We also 
evaluated the forecasts using a performance diagram, which in contrast to other results did not confirm that 
forecasts using 2-moment cloud microphysical scheme were more accurate than forecasts using 1-moment cloud 
microphysical scheme. Spatial verification of LPI showed that depending on the distance limit (15–90 km) and 
the LPI threshold (from LPI > 0 Jkg− 1 to LPI > 50 Jkg− 1), the probability of lightning discharge occurrence was 
ca 30–90% and the proportion of successfully predicted lightning discharges reached up to 77%. We consider this 
result satisfying, though the spatial verification remains challenging. Contrary to spatial verification of LPI, the 
temporal verification of LPI turned out to be even more efficient (in 70% of cases the time difference between the 
defined beginnings of forecasted and detected lightning activity was maximum 45 min). In future, we plan to 
perform lightning prediction in another NWP model, namely the ICON NWP model. We also plan to analyse more 
thunderstorm events.   

1. Introduction 

Lightning activity is considered a severe meteorological hazard that 
needs to be studied, monitored as well as predicted. Lightning is closely 
related to strong convection in the atmosphere, which is a very complex 
phenomenon that is difficult to model. Such modelling is especially 
complicated if electrical processes must be included because our 
knowledge in this area is still incomplete. Thus, the forecast of lightning 
activity is very limited at present (Dementyeva et al., 2015; Gharaylou 
et al., 2019; Lynn and Yair, 2010; Mejsnar et al., 2018; Rezacova and 

Sokol, 2003; Sokol and Minářová, 2020; Yair et al., 2010). 
There are several approaches to predict lightning occurrence. At 

present, the majority of prediction methods is based on using a nu
merical weather prediction (NWP) model and various indices which are 
related to convective or electrical processes. These indices indirectly 
describe and quantify atmospheric processes related to lightning. For 
example, the convective indices such as CAPE (Convective Available 
Potential Energy; Williams and Renno, 1993), CPTP (Cloud Physics 
Thunder Parameter; Bright and Wandishin, 2005), CAPE*P (CAPE 
combined with precipitation; Romps et al., 2018) or the Whiting 
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coefficient (Sturtevant, 1995) are usually employed. Yair et al. (2010) 
introduced another useful lightning prediction tool, the Lightning Po
tential Index (LPI). 

The LPI is defined as the kinetic energy of the updraft in a developing 
thundercloud scaled by the potential for charge separation based on 
mixing ratios of ice and liquid water within the main charging zone 
(from 0 ◦C to − 20 ◦C) of the cloud (Yair et al., 2010). The LPI can have 
non-negative values that are given in Jkg− 1. Yair et al. (2010) and Lynn 
and Yair (2010) also suggested that the LPI is not only a useful param
eter for lightning prediction, but also a helpful tool for improving 
weather forecasts of convective storms and heavy rainfall. Several 
studies (e.g. Gharaylou et al., 2019) confirm that the LPI has better 
performance in prediction of lightning occurrence than other indices. 
Wang et al. (2011) showed a good spatial and temporal consistence of 
calculated LPI with observed lightning flashes. Moreover, Ou Jianfang 
et al. (2019) suggested that the LPI can be used to forecast lightning 
density. 

Sokol and Minářová (2020) found that the LPI is a promising tool in 
predicting the lightning activity in the region of the Czech Republic, 
Central Europe. In their study, they calculated the LPI within the 
COSMO NWP model (http://www.cosmo-model.org). This study builds 
on their study and uses the same model forecasts. The current study, 
however, aims at spatial and temporal analyses of LPI prognostic fields 
calculated for 10 thunderstorm events which occurred in 2018 in the 
Czech Republic. Contrary to Sokol and Minářová (2020), our study does 
not evaluate the potential of the use of LPI, though verifies the lightning 
prediction as such. In addition, this paper newly compares the distri
bution of model and observed lightning activity in dependence on 
orography and their spatial and temporal distributions. Thus, the main 
focus of this study is on spatial and temporal verification of the LPI fields 
using ground-based measurements of lightning discharges. 

This paper is organized as follows. After this introductory section, 
Section 2 describes the study region, COSMO NWP model setup, veri
fication methods, and observed data of lightning. Section 3 provides 
examples of predicted LPI, investigates different model setups, analyses 
LPI in relation to model orography, and presents and discusses the re
sults of LPI verification in space and time. Section 4 is dedicated to a 

discussion of presented study in comparison with our previous study and 
finally Section 5 draws conclusions of this paper. 

2. Data and methods 

2.1. Study region 

The region considered in this study (Fig. 1) matches with the model 
domain of the COSMO NWP model. The whole region is covered by a 
grid of 271 × 231 nodes with a horizontal step of 1.2 km. Fig. 1 also 
shows the model orography of the study region, which spans from 108 to 
1297 m ASL. It should be noted that the model orography is smoothed 
due to finite resolution of the COSMO NWP model, therefore it differs 
from a detailed digital elevation model in the highest elevations. How
ever, the model orography maintains the general orographic features 
such as mountain ridges well. Fig. 2 shows the relative distribution of 5- 
m intervals of elevation in the study region. 

2.2. Configuration of COSMO NWP model 

We base this study on the same simulations as in Sokol and Minářová 
(2020), however, we analyse them deeper and verify the predictions in 
space and time. The COSMO NWP model used for our simulations was a 
non-hydrostatic convection-permitting model (http://www.cosmo- 
model.org), version 5.04d. Initial and boundary conditions were calcu
lated using forecasts of the COSMO D2 model (https://www.dwd.de/Sh 
aredDocs/downloads/DE/modelldokumentationen/nwv/cosmo_d2/cos 
mo_d2_dbbeschr_version_1_0_201805.html), which were kindly pro
vided by the German Weather Service. Boundary conditions having a 
time resolution of 1 h were available, and in between, they were linearly 
interpolated in time (Sokol and Rezacova, 2006). We used model 
namelists intended for the use in Europe, which were available together 
with the model code COSMO and did not change the defined model 
parameters. 

We run the model for 10 selected thunderstorm events (Table 1) 
twice, differing in comprised cloud microphysical scheme, 1- and 2- 
moment (1M and 2M, respectively) cloud microphysics. In the model, 

Fig. 1. Study area and the model orography. The red line indicates the borderline of the Czech Republic (Central Europe). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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we computed LPI (option of the COSMO NWP model) prognostic values 
over the study region (Fig. 1) and used the values of LPI in the time step 
of 15 min. 

Each simulation began at 06 or 12 UTC according to the time of the 
maximum intensity of individual thunderstorms and each model run 
provided a forecast with a lead time of up to 12 h. The time step of model 
integrations was 6 s, the vertical resolution covered 70 layers spanning 
from the model orography to 22 km. The model layers were unevenly 
distributed. Lower vertical layers were denser (i.e., their vertical reso
lution was higher, in the order of tens to first hundreds of m) than upper 
vertical layers for a more accurate physical description of the processes 
occurring near the ground. 

2.3. Verification data set – Detected lightning discharges 

For the 10 selected thunderstorm events (Table 1), we dispose of a 
dataset of ground-based observations of lightning flashes that we ob
tained for the Czech region from the German network Blitz Informa
tionsdienst Siemens (BLIDS, new.siemens.com/global/de/produkte/se 
rvices/blids.html), which is a part of the European Cooperation for 
Lightning Detection (EUCLID, https://www.euclid.org). BLIDS uses the 
time-of-arrival (TOA) principle based on detection of electromagnetic 
impulses induced by a lightning discharge. Each receiver registers the 
TOA of such individual impulse and by comparing the TOAs among 
receivers, location of the lightning discharge is found. 

The data of detected lightning activity comprise following 

characteristics: exact time of occurrence of the discharge (with ms ac
curacy, in UTC), geographical coordinates of the discharge (in WGS84), 
type of the discharge, cloud-ground (CG) or cloud-cloud (CC), polarity of 
the discharge (positive “+” or negative “–“), peak current (in kA), and 
binary information on data quality. According to the binary information, 
the quality of all the obtained data was good. The median of spatial 
accuracy of the data at the confidence level of 95% was 600 m and the 
detection efficiency was almost 100% (Poelman et al., 2013). 

When comparing the forecasted lightning activity with the detected 
one, it is important to know what kind of data we are dealing in this 
comparison with. Thus, it is important to carry out some basic charac
terization of the data of the recorded lightning discharges. In this study, 
we analysed spatiotemporal distribution of the data, diurnal course of 
the discharges and occurrence of the CG flashes related to model 
orography. 

The spatiotemporal distribution analysis was in agreement with our 
expectation as well as other studies, for example with Novák and 
Kyznarová (2011) who studied lightning activity in the Czech Republic 
during the years 2002–2008. In our study, the general movement di
rection of events was found from the West to the East, which corre
sponds to the prevailing wind direction over the study region (Tolasz, 
2007). Considering CG vs. CC types of discharges, the CC discharges 
were much more frequent, according to our expectations. On average, 
the CG flashes represented 19.9% of all recorded discharges, which 
agrees with theoretical assumptions (Rakov and Uman, 2007). 

Fig. 2. The relative distribution of 5-m intervals of elevation (105–1300 m ASL) over the study area (Fig. 1).  

Table 1 
A list of examined events. First column gives the date of the event in the 
YYYYMMDD format, when a significant lightning activity occurred in the study 
region. Second column shows the beginning time in UTC of the simulation run in 
the COSMO NWP model. Third column denotes the total number of lightning 
discharges detected in the same region in the time frame of 12 h since the 
beginning of the forecast according to observations by EUCLID.  

Event 
no. 

Event 
[YYYYMMDD] 

Beginning of the run 
[UTC] 

No. of detected lightning 
discharges 

1 20180601 06 47,580 
2 20180610 06 28,378 
3 20180705 12 2681 
4 20180802 12 10,132 
5 20180803 06 1070 
6 20180804 12 12,309 
7 20180808 12 15,114 
8 20180813 12 1213 
9 20180824 12 5278 
10 20180921 12 5457  

Fig. 3. The diurnal course of the number of detected lightning discharges per 
hour per event. The intervals 22-23 and 23-00 UTC are cut off due to a lack of 
data caused by a shift of the data from CEST (Central European Summer Time) 
to UTC. 
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Fig. 3 shows the diurnal course of the average number of detected 
lightning discharges with its clear peak in the early afternoon (13-14 
UTC). The minimal lightning activity occurs late at night. The diurnal 
course corresponds well to other studies of this sort (e.g. Blakeslee et al., 
2013; Enno et al., 2020). 

The distribution of CG discharges related to the model orography of 
the study region is depicted in Fig. 4 (upper left). The distribution of CG 
flashes as such (not shown) corresponded quite well to the distribution 
of the 5-m intervals of elevation across the whole region (Fig. 2). The 
most of the lightning activity occurred between 200 and 600 m ASL 
since this interval represents 77.8% of the whole region. However, when 
related to a unit of area (1 grid square) it suggests that the lightning 
activity varies in its elevation-related frequency quite a lot (Fig. 4 upper 
left). The three remaining diagrams in Fig. 4 are discussed later in this 
paper. 

In order to statistically test the relationship between elevation and 
distribution of CG discharges, we calculated both Pearson (R) and 
Spearman (RS) correlation coefficients (Wilks, 2019). Usually, R is used 
to measure linear relationship, though according to general experience 
it can be used even if the theoretical assumptions on linearity are not 
met. However, it is clear (Fig. 4 upper left) that if there any correlation 

were, it would not be linear. We calculated R and RS values for both sum 
of CG discharges and sum of CG discharges per 1 grid square (not shown 
and Fig. 4 upper left, respectively). In the first case, the R value was 
− 0.63, whereas the RS value was − 0.69. For the second case (Fig. 4 
upper left), the R value was − 0.17, whereas the RS value was − 0.25. By 
testing all four values with a simple statistical t-test (with the confidence 
interval 95%) we got that the data cannot be regarded as independent. 
However, the obtained values are not significant enough to perform 
further analyses. The lack of a strong correlation between distribution of 
CG discharges and elevation can be explained by elevation not being the 
most dominant factor for formation of convection in the study region 
during considered events. 

Other studies (e.g. Kotroni and Lagouvardos, 2008; Schulz and 
Diendorfer, 1999; Smorgonskiy et al., 2013) show general increase in 
lightning activity with elevation, though this tendency is very incon
sistent throughout all considered terrain levels. They suggest that the 
dependence is complicated, which is in agreement with our findings. 

2.4. Verification methods 

Verification of the LPI prediction using the measured discharges is 

Fig. 4. The distribution of CG discharges and LPI prognostic values related to the model orography. Each point represents a 5-m interval of elevation (from 105 to 
1300 m ASL). The upper left diagram depicts the weighted sums of CG discharges per 1 grid square, the weight being the ratio of the number of grid squares of the 
elevation interval to the number of grid squares of the whole region (Fig. 2). The upper diagram on the right and both bottom diagrams depict the distribution of the 
weighted number of LPI values corresponding to different thresholds (LPI > 0 Jkg− 1, LPI > 10 Jkg− 1 and LPI > 20 Jkg− 1) per 1 grid square, the weight being the same 
as described above. 
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not straightforward, because the data of detected lightning activity is 
represented by a set of points specified by their absolute location in a 
geographical coordinate system, whereas the LPI prognostic values are 
given as planar information, which makes these two types of data not 
easy to compare with each other. Although the position of the measured 
discharges has a similar surface structure as the measured severe 
convective precipitation, the continuous character of LPI and discrete 
nature of the electrical data is not very suitable for the application of 
methods focused on verification of precipitation such as the Fraction 
Skill Score (FSS; Roberts and Lean, 2008) or similar techniques discussed 
by Wilkinson (2017). The problem consists in determining suitable 
thresholds of LPI values corresponding to selected thresholds of number 
of recorded lightning discharges in grid point area. Despite questionable 
use of FSS we carried out this analysis for both 1M and 2M cloud 
microphysics, its application and results are presented in Section 3.4. 
Moreover, we present the performance diagram combining four cate
gorical skill scores for LPI forecasts using 1M and 2M cloud micro
physics, although it is worth noting that verification methods based on 
point to point comparison are not very suitable due to discrete character 
of data leading to double error (miss and false alarm), e.g. Harvey et al. 
(1992). For the reason described above we also used another verification 

method, which estimates the forecast accuracy, and we denoted it pq- 
method. It is presented and discussed in detail in Section 3.4. 

It is also important to bear in mind that the forecasted LPI values 
depend on the overall simulation in the NWP model. More precisely, 
location of predicted lightning occurrence depends on the location of 
simulated deep convection. Thus, the accuracy of lightning prediction in 
a given area is significantly influenced by the success of the model to 
forecast other weather features, which precede lightning. Therefore, the 
verification of the forecasts of lightning activity can be understood as the 
verification of the model ability to forecast strong convection and severe 
storms. Although the 2M cloud microphysics physically describes strong 
convection better than the 1M cloud microphysics (as discussed later in 
this paper), it is useful to know how this is reflected in quality of the 
lightning forecasts. 

In this study, we examined the LPI prognostic fields in relation to 
detected lightning discharges both in space and in time, each individ
ually. We verified the LPI prognostic values by the dataset of detected 
lightning discharges using two different approaches. In the first 
approach, we compared spatial distributions of the LPI values and 
detected lightning discharges by analysing the correlation between the 
LPI values and the proximity of recorded discharges and vice versa. In 

Fig. 5. An example of LPI prognostic values (colour scale) using 2M cloud microphysics depicted together with detected lightning discharges (CG red crosses, CC 
green crosses) for the three strongest thunderstorm events: 20180601 10:00–10:30 UTC, 20180610 11:45–12:15 UTC, and 20,180,808 14:00–14:30 UTC. Shown are 
the discharges detected in the time intervals 9:45–10:30, 11:30–12:15 and 13:45–14:30 UTC, respectively. Black line represents the borderline of the Czech Republic. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the second approach, we evaluated the concurrence of time courses of 
both forecasted and observed lightning activity, namely the sum of LPI 
values and the number of detected lightning discharges both across the 
whole study region (Fig. 1). For the verifications we only considered the 
LPI prognostic values given by the model simulation with the 2M cloud 
microphysics (the reason for that is discussed later in this paper). 

3. Results and discussion 

3.1. Examples of predicted LPI fields for three strongest thunderstorms 

We defined three strongest thunderstorm events based on the highest 
total number of detected lightning discharges in the study region during 
given events. The three strongest thunderstorm events correspond to 
Events No. 1, 2 and 7 in Table 1. We selected these events to demonstrate 
the distribution of predicted and detected lightning activity. Fig. 5 
shows examples of forecasted LPI fields (using 2M cloud microphysics) 
and compares them with observations of CG and CC flashes. All of the 
examples indicate a good spatial consistence of both types of data. 

3.2. Comparison of 1M and 2M cloud microphysics 

Before verification of the LPI prognostic fields as such, we compared 
the datasets of predicted lightning activity according to the 1M and 2M 
cloud microphysical schemes, similarly to Sokol and Minářová (2020) 
where histograms of the data were presented. However, in this study, we 
not only compared the LPI values given by 1M and 2M cloud micro
physics, but also analysed them along with observed lightning activity. 

We studied the overall frequencies of the LPI prognostic values 
calculated in the COSMO NWP model using 1M and 2M cloud micro
physics. Table 2 gives an overview of basic characteristics of the LPI 
prognostic values, the values LPI = 0 Jkg− 1 were excluded for the 
calculation of the mean LPI value (mean LPI) and for the calculation of 
the average frequency of LPI (mean N). As shown in Table 2, when 
considering the 2M cloud microphysics, the LPI prognostic values are 
not only higher, but also more frequent. 

Moreover, we studied the relationship of detected and forecasted 
lightning activity along with 1M and 2M cloud microphysics. We carried 
out a linear regression of the sum of LPI values and the number of 
detected lightning discharges for four different combinations: 1M and 
2M cloud microphysics each combined with either total lightning ac
tivity (CG + CC discharges) or CG discharges separately. This is a new 
analysis which was not performed in Sokol and Minářová (2020). For all 
four regression models, coefficients of determination (R2, Wilks, 2019) 
were tested with a simple statistical t-test (with the level of significance 
5%) and it was confirmed that the data cannot be regarded as inde
pendent. Both linear models considering 2M cloud microphysics proved 
to better fit the data than the models considering 1M cloud microphysics 
(Fig. 6, Table 3). This result is in agreement with the findings of Sokol 
and Minářová (2020), who showed by performing the Area under the 
Receiver Operating Characteristic (AROC) evaluation that using 2M 
cloud microphysics was more successful for lightning prediction by LPI. 

Furthermore, we tried to distinguish CG activity from the total 
lightning activity to see if there were any significant difference. 

However, we found out that the model fits slightly better when 
considering total lightning activity rather than CG discharges separately, 
thus for further analyses and verifications only total lightning activity is 
taken into account. 

3.3. LPI characteristics related to model orography 

Similarly to Section 2.3 (Fig. 4 upper left) where we showed the 
occurrence of CG discharges along with the model orography (namely 
sum of CG discharges per 1 grid square), we analysed the distribution of 
the LPI prognostic values in relation to the model orography as well 
(Fig. 4 upper right and both bottom diagrams). First of all, we investi
gated the overall distribution of grid points where LPI > 0 Jkg− 1 (not 
shown). Then, we studied the distribution of LPI grid points depending 
on several different thresholds (examples for LPI > 0 Jkg− 1, LPI > 10 
Jkg− 1 and LPI > 20 Jkg− 1 are shown in Fig. 4) which we used to 
calculate the number of grids in a unit of area (1 grid square). 

The general distribution of LPI grid points in all of the cases (Fig. 4 
upper right and both bottom diagrams) is consistent with the findings of 
detected lightning activity in Section 2.3 (Fig. 4 upper left). The overall 
predicted lightning activity (not shown) corresponded well to the model 
orography in study region (Fig. 2) as well as to the distribution of CG 
discharges (not shown). The distribution of LPI grid points per 1 grid 
square (the upper right diagram and both bottom diagrams in Fig. 4) 
preserves the general distribution compared to CG discharges per 1 grid 
square (Fig. 4 upper left), though the higher the LPI threshold, the less 
total number of LPI grid points and the less visible consistency of the 
distribution of the values. On the whole, the consistency of presented 
distribution of both predicted and observed lightning activity can be 
considered a good result indirectly confirming that the model micro
physics is well applied in the COSMO NWP model. 

Moreover, it is worth noting that in contrast to lightning activity 
(Fig. 4) a similar relationship between model elevation and accumulated 
precipitation forecast was not found (not shown). This agrees with 
analysis of convective precipitation performed by Sokol and Bližňák 
(2009). They used measured precipitation data to present that convec
tive precipitation lasting up to 6 h does not depend on elevation in the 
study region. 

3.4. Verification of the LPI prognostic values in space 

As mentioned above, lightning prediction in NWP models depends 
on how well the model simulates the development of the atmospheric 
conditions and processes. Therefore, we verified the LPI prognostic 
values in space and in time, each individually. First, we performed the 
FSS analysis, then carried out the performance diagram and then used 
the pq-method to verify the LPI values in space. 

3.4.1. The FSS 
FSS values range from 0 (completely wrong forecast) to 1 (perfect 

forecast) and depend on size of squares (x) for which FSS is calculated. 
We considered x from 3 km up to 200 km. The FSS takes into account 
spatial information from the neighbourhood of a verified grid box. It 
does not give any information about quantitative accuracy, however, 
using FSS values one can determine the scale for which a given forecast 
is skilful and useful. The forecast is considered skilful for scale x if FSS 
(x) ≥ FSSu = 0.5 + f0/2, where f0 is the probability of occurrence of 
forecasted event (Roberts and Lean, 2008). In our case, the event is 
defined in such a way that at least a given number NF of flashes is 
recorded in a given 15 min interval in a given grid point area. The fre
quency of flashes is very low, thus f0 is approximately 0 and FSSu ≈ 0.5. 

We calculated the dependence of FFS(x) for the following LPI 
threshold values T: 0.01, 10, 20, 30, 40, and 50 Jkg− 1. We tested several 
values of NF, because NF expresses the strength of the event. As expected, 
the results confirmed that the model is not able to forecast weak events, 
e.g. for NF = 1. The FSS values for such events were always less than 0.5 

Table 2 
A summary of basic characteristics of the LPI prognostic values given by 1M and 
2M cloud microphysics. Max LPI and mean LPI stand for the overall maximum 
value and the average value of LPI (excluding LPI = 0 Jkg− 1), respectively. Mean 
N is the average frequency of positive LPI values. Z0 shows the proportion of 
occurrences of LPI = 0 Jkg− 1.  

Cloud 
microphysics 

max LPI 
[Jkg− 1] 

mean LPI 
[Jkg− 1] 

mean N Z0 [%] 

1M 195.80 1.24 2.28 * 103 97.44 
2M 460.52 1.66 3.11 * 103 96.51  
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for all considered x values. Fig. 7 presents FSS values dependent on x for 
NF = 5 for both 1M and 2M cloud microphysics. In the case of 2M cloud 
microphysics, the forecast is skilful for scales around 90 km when we use 
LPI thresholds 30, 40 or 50 Jkg− 1. If we use the LPI threshold 20 Jkg− 1, 
the skilful scale is about 160 km. For 1M cloud microphysics skilful 
forecasts are reached at scales around 140 km for the LPI thresholds 30, 
40 or 50 Jkg− 1, which is a larger scale in comparison to 2M cloud 

microphysics. However, the opposite is true for the LPI threshold 20 
Jkg− 1 where 1M cloud microphysics gives better results. We are not able 
to explain this result. 

In our opinion, based on our experience with various values of NF 
that we tested, NF = 5 is a reasonable compromise between the intensity 
of the phenomenon and its predictability and thus we chose this value 
for the FSS analysis. The results obtained (Fig. 7) can be interpreted as 
follows. If the LPI ≥ 40 Jkg− 1 in a grid point, then at least NF = 5 dis
charges can be expected in the area of 90 × 90 km and 130 × 130 km 
around the grid point for the model with 2M and 1M cloud microphysics, 
respectively. 

3.4.2. The performance diagram 
Following the FSS analysis, we also used a combination of four well- 

known categorical skill scores derived from the 2 × 2 contingency table 
(Wilks, 2019): the probability of detection (POD), false alarm ratio 
(FAR), bias, and critical success index (CSI; also known as the threat 
score). These four skill scores are defined as follows: 

POD = a11/(a10 + a01), (1) 

Fig. 6. A comparison of linear models for the sum of LPI values and the number of detected lightning discharges, both averaged per hour per grid square. Each 
symbol “x” represents one event (enumerated according to Table 1). Upper diagrams depict values according to the 1M cloud microphysics, lower ones according to 
the 2M cloud microphysics. Diagrams on the left show values for the total lightning activity, whereas diagrams on the right consider only CG discharges. Further 
information about these linear models is given in Table 3. 

Table 3 
A summary of basic characteristics of linear models depicted in Fig. 6. R2 denotes 
the coefficient of determination of the particular linear model.  

Cloud microphysics – type of lightning 
discharges 

R2 Linear model 

1M – CG 0.56 y = 3.7x * 10− 2 + 3.8 * 
10− 4 

2M – CG 0.61 y = 2.4x * 10− 2 − 3.8 * 
10− 4 

1M – CG + CC 0.55 y = 0.17x + 3.8 * 10− 3 

2M – CG + CC 0.69 y = 0.12x − 1.6 * 10− 3  
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FAR = a01/(a11 + a10), (2) 
CSI = a11/(a11 + a01 + a10), (3) 
and 
bias = (a11 + a10)/(a11 + a01), (4) 
where the aFO coefficients in (1–4) are elements of the contingency 

table. The index O = 0/1 indicates the event observation (with O = 1 if 
the event was observed and O = 0 if it was not). The index F = 0/1 
relates to event forecast (where F = 1 if the event was forecasted and F =
0 if it was not). The POD, FAR, CSI, and bias can be presented in one 
figure, commonly called the performance diagram (e.g. Rezacova et al., 
2009; Roebber, 2009). Values of POD, 1-FAR, and CSI are between 
0 (completely wrong) and 1 (perfect fit). 

As mentioned earlier, application of skill scores may lead to double 
error. To partly reduce this problem, we covered the model area by 
smaller square areas with sides of 36, 60, 84, and 108 km and defined an 
event for mean values of these areas. These squares were arranged to 
cover the inside of the model area but not to overlap. The centre of the 

model area and the centre of each whole area consisting of smaller 
squares were the same. The edges of the model area remained uncov
ered. It should be noted that the results can be affected by the number of 
squares for which events are defined, since they significantly vary 
depending on their size. 

We defined the events by a comparison of thresholds TLPI and TOBS 
with the average LPI per grid point in the single squares (MLPI) and the 
average number of observed lightning strikes per grid point in the same 
squares (MOBS). The event occurred if TLPI ≥ MLPI and similarly TOBS ≥

MOBS. Note that TLPI and TOBS are different quantities. In order to find 
corresponding values, we compared the percentiles of all observed and 
forecasted grid point values. We chose the 90th, 95th, 97th, and 99th 
percentiles to define the thresholds, namely TOBS = 1, 9, 22, 81 and TLPI 
= 1.105, 63.36, 217.07, 861.69, respectively, for forecasts using 2M 
cloud microphysics. In the case of 1M cloud microphysics, TOBS were the 
same and TLPI = 0.320, 33.395, 119.18, 502.615, respectively. The 
chosen thresholds were the same for all square sizes and were 

Fig. 7. The dependence of FSS values on scale x (3–200 km) for different LPI thresholds T (0.01, 10, 20, 30, 40, and 50 Jkg− 1) for 1M (upper diagram) and 2M 
(bottom diagram) cloud microphysics. The event is defined in such a way that at least NF = 5 of flashes is recorded in a given 15 min interval in a given grid point 
area. Both NF and LPI thresholds are related to the same areas and 15 min time intervals. 

I. Babuňková Uhlí̌rová et al.                                                                                                                                                                                                                 



Atmospheric Research 268 (2022) 106025

9

intentionally selected quite high to see how successful the forecast of 
severe events is. This choice was based on the fact that prediction of 
severe storms is important mainly from the practical point of view. 

Fig. 8 shows the values of POD, 1-FAR, CSI, and bias for the four 
thresholds TOBS and corresponding TLPI, and for four different sizes of 
squares: 36 × 36 km, 60 × 60 km, 84 × 84 km, and 108 × 108 km. Small 
square and cross symbols in Fig. 8 show results of forecasts of 2M and 1M 
cloud microphysics, respectively. Each symbol occurs four times corre
sponding to square sizes, namely the larger the square, the larger the 
CSI. 

Fig. 8 indicates that forecasts using the 2M cloud microphysics give 
slightly higher CSI than 1M cloud microphysics. However, the hypoth
esis that 2M cloud microphysics provides significantly higher CSI than 
1M cloud microphysics (for selected thresholds and sizes of squares) was 
rejected by a bootstrap test at probabilistic level of 90% almost for all 
forecasts. The bootstrap test used random samplings of the observed and 
the forecasted data with replacement from the sample data to estimate 
confidence intervals for parameters of interest. We applied the pre- 
defined function bootci (bootstrap confidence interval) in MATLAB 
software (www.mathworks.com). 

Fig. 8 clearly demonstrates that higher values of CSI are obtained for 
larger areas and lower thresholds. This can be explained by that the 
effect of double error is reduced for the larger squares and that pre
sumably the accuracy of prediction decreases with increasing extremity 
of the event. It is worth noting that for all presented types of forecasts, 
the bias is close to unity, which is a consequence of the fact that the 
thresholds were selected on the basis of the same percentiles for both 
observed and forecasted values. 

3.4.3. The pq-method 
In order to verify the predicted lightning activity in space using the 

pq-method, we first analysed the distances between each grid point 
where LPI exceeded a given threshold (we tested different thresholds 
from LPI > 0 Jkg− 1 to LPI > 50 Jkg− 1) and its nearest detected discharge 
that occurred within 15 min, these two making a pair. We investigated 
how many of these pairs (LPI grid point + nearest discharge) occurred 
within a certain distance and denoted the proportion of the pairs by p. 
We tested several distances from 15 to 90 km. Then, we calculated the 
average p value of each event and average value (denoted mean p) of all 
events for given threshold of LPI and distance limit, as presented in 
Table 4. 

The mean p characteristic can be interpreted as the probability of 
occurrence of a lightning discharge within given distance from a grid 
point where LPI has a certain value. For instance, according to Table 4, 
the probability of having a lightning discharge within 30 km from a grid 
point where LPI > 20 Jkg− 1 is almost 75%. It can be summarized that the 
greater distance limit and also the higher LPI threshold, the higher 
probability of occurrence of lightning discharges. These results provide 
answers to a question on what one can expect in the area surrounding a 
given grid point when LPI in the grid point is greater than a certain 
threshold. 

However, this characteristic ignores those cases when lightning was 
observed but LPI was zero or below the given threshold (i.e. so-called 
misses). The characteristic also misses the information about the light
ning activity that occurs in a greater distance than where predicted 
(including the maximum tested limit: 90 km). Thus, we also investigated 
the relationship between the LPI prognostic values and nearest detected 
discharges vice versa. We analysed whether there was a grid point with 
LPI > 0 Jkg− 1 and how far it was to each detected discharge (these two 
making a pair again) within given distance limit (15–90 km), depending 
on the threshold of the LPI value (from LPI > 0 Jkg− 1 to LPI > 50 Jkg− 1). 
In order to interpret this analysis, we calculated the proportion of the 
pairs to all detected discharges and denoted it by q. Similarly, as 
mentioned above, we focused on the mean q values given in Table 5. 

In fact, the mean q characteristic gives information about the pro
portion of successfully predicted lightning discharges depending on 
distance and LPI threshold. For example, on average, 12.5% of all 
lightning discharges were predicted by LPI > 20 Jkg− 1 within 30 km 
(Table 5). This characteristic answers the question on how successfully 
the model indicates observed lightning. 

Based on this characteristic, it can be summarized that the lower LPI 
threshold and the greater distance limit, the higher proportion of suc
cessfully predicted lightning discharges. The decrease of mean q values 
along with increasing LPI can also be explained by the frequency of LPI 
values introduced in Section 3.2 where we showed that higher LPI 
values are generally less frequent. Nevertheless, it is important to 
mention that this analysis does not consider one of the errors in the 
double error problem, namely the mean q values are independent of the 
extent of LPI prognostic fields. For instance, for a 100% success it would 
be enough for a model to predict positive LPI values in the whole study 
region. This also is one of the reasons we investigated mean q for 
different thresholds of LPI. In this sense, the previous “p-method” is 
stricter than the “q-method”. 

Fig. 8. The performance diagram combining POD, 1-FAR, CSI, and bias for 
TOBS = 1, 9, 22, 81. Thresholds TLPI = 1.105, 63.36, 217.07, 861.69 for 2M 
cloud microphysics and TLPI = 0.32, 33.395, 119.18, 502.615 for 1M cloud 
microphysics. Shown are the values corresponding to four different sizes of 
squares: 36 × 36 km, 60 × 60 km, 84 × 84 km, and 108 × 108 km. Each item of 
the legend represents results for four square sizes mentioned above. The highest 
CSI values correspond to largest squares and with decreasing square size CSI 
also decreases. Small square and cross symbols represent the results of forecasts 
using 2M and 1M cloud microphysics, respectively. The curves indicate the 
values of CSI and the straight lines starting from point [0,0] stand for bias =
0.5, 1, and 2. 

Table 4 
An overview of the mean p values for each tested LPI threshold and distance 
limit. LPI thresholds are given in Jkg− 1.  

Distance 
limit 

LPI > 0 LPI >
10 

LPI >
20 

LPI >
30 

LPI >
40 

LPI >
50 

15 km 0.3019 0.4191 0.5043 0.5337 0.5717 0.5843 
30 km 0.5068 0.6371 0.7485 0.7166 0.7393 0.7400 
45 km 0.6276 0.7720 0.8408 0.8198 0.7996 0.7968 
60 km 0.7057 0.8178 0.8719 0.8514 0.8339 0.8333 
75 km 0.7697 0.8612 0.9053 0.8938 0.8830 0.8870 
90 km 0.8147 0.8834 0.9269 0.9194 0.9151 0.9216  

I. Babuňková Uhlí̌rová et al.                                                                                                                                                                                                                 

http://www.mathworks.com


Atmospheric Research 268 (2022) 106025

10

It is worth mentioning that it was only in 4% of all cases (considering 
15 min prediction intervals) where none of all detected lightning dis
charges were predicted within the maximum distance of 90 km. The 
values of both mean p and mean q showed that the lightning prediction 
and its successfulness varied depending on the distance limit and the LPI 
threshold. By a suitable choice of the distance limit and the LPI 
threshold, the accuracy of the forecast can be optimized according to 
one’s requirements. 

It is also important to note that in at least two cases out of the 10 
simulated thunderstorms (event no. 5 and 8 in Table 1), the model 
incorrectly predicted the development of the meteorological situation 
and especially the development of convection in the verified area (Sokol 
and Minářová, 2020), which of course negatively affected the mean p 
and mean q values in Table 4 and Table 5, respectively. However, these 
cases of inaccurate predictions occur in practice, and therefore we did 
not exclude them from the data. 

3.5. Verification of the LPI prognostic values in time 

In order to verify the LPI prognostic values in time, we used a semi- 
subjective method since full objectivity was not possible due to incon
sistency among the events. We assessed the concurrence of the time 
courses of the detected and forecasted lightning activity, independent of 
their spatial location in study domain. We compared the time difference 
in 15 min time intervals between forecasted (LPI values in the time step 
of 15 min) and detected (15 min summed number of observed dis
charges) beginning of the event both defined by a combination of a local 
maximum with a sudden increase (jump) in the values. Fig. 9 presents 
the selected beginnings by vertical dashed lines and Table 6 gives the 
resulting time difference between the beginnings. 

In some cases in Fig. 9 and Table 6, the predicted lightning activity 
corresponds quite well with the detected one with a time difference 
between the beginnings 0 min (event no. 3 and 4 in Table 1). On the 
other hand, some of the events show a significant inconsistency in the 
temporal concurrence of the predicted and forecasted lightning activity. 
The worst result for the event no. 1 (Table 1) in Fig. 9 and Table 6 might 
be related to the fact that this event showed quite low values of FSS for a 
rain rate above 5 mm/h (Sokol and Minářová, 2020), which means that 
meteorologically, this event was not very well predicted by the model. 
The same applies to the two aforementioned events (no. 5 and 8 in 
Table 1) with a time difference between the beginnings +45 min and −
60 min, respectively (Table 6), which were predicted incorrectly and 
even excluded by Sokol and Minářová (2020) for further analyses due to 
FSS values close to zero. 

In general, in 50% of all cases, the time difference between the 
defined beginnings of forecasted and detected lightning activity was 15 
min or less (Fig. 9, Table 6). It was 45 min or less in 70% of the cases and 
in 90% of all cases the time difference was 60 min or less. To have a 
temporal inaccuracy of only one hour can be considered a fair outcome. 

4. Discussion related to the previous study 

Even though our study is based on the same COSMO NWP model runs 
as in Sokol and Minářová (2020), the current analysis is much deeper 

and brings new knowledge. We analysed the simulations with 1M and 
2M cloud microphysics in more details and we verified the LPI prog
nostic values in space and time. Specifically, we constructed linear 
models for the sum of LPI values and the number of detected lightning 
discharges both averaged per hour per grid square as a function of LPI. 
Their accuracy expressed by R2 convincingly shows that using 2M cloud 
microphysics gives better results than 1M cloud microphysics, thereby 
provides a clear evidence to the suggestion made by Sokol and Minářová 
(2020). 

In this study, we newly compared and found reasonable agreement 
between relationships of the predicted lightning activity expressed by 
LPI and the model orography and observed lightning activity and the 
model orography. This agreement supports the statement that the model 
microphysics is well applied in the COSMO NWP model and the LPI has a 
good physical background. 

Contrary to the previous study (Sokol and Minářová, 2020), where 
the Receiver Operating Characteristics was used, which evaluates the 
potential of the method, we compared the predicted LPI directly with 
observations in time and space. For the spatial verification, we consid
ered distances from grid points with positive LPI to recorded lightning 
discharges and vice versa, and for the temporal verification, we analysed 
the time differences between predicted and detected beginnings of each 
lightning event. The verification methods used in this study are more 
illustrative, especially in terms of practical application of the method. 
Verifications of the results confirm that LPI is a useful forecasting tool 
for lightning prediction. 

5. Conclusion 

In this study, which is a continuation of our previous work (Sokol and 
Minářová, 2020), we investigated 15 min prognostic values of LPI 
calculated by the COSMO NWP model for 10 thunderstorm events which 
occurred in 2018 in Central Europe. We verified them in space and time 
against detected lightning activity using new methods. We also analysed 
both predicted and recorded lightning activity in relation to the model 
orography, which according to the best of our knowledge was performed 
for the first time in the case of forecast. Moreover, we compared 
different model runs using 1M and 2M cloud microphysics, newly in 
relation to the recorded lightning activity. 

Our conclusions can be summarized as follows: 

- 2M cloud microphysical scheme is more suitable for lightning fore
casts based on LPI than 1M cloud microphysical scheme.  

- Distribution of LPI values related to model orography corresponds 
well with that of recorded CG discharges, which confirms a good 
physical background of both the COSMO NWP model microphysics 
and the LPI.  

- The FSS revealed that for 2M cloud microphysics we mostly reached 
a skilful forecast at smaller scales than for 1M microphysics, namely 
at scales around 90 km if we used LPI thresholds 30, 40, and 50 
Jkg− 1.  

- The performance diagram presented that higher values of CSI are 
obtained for larger areas and lower thresholds. In contrast to the 
other results, this evaluation did not confirm that forecasts using 2M 
cloud microphysical scheme were more accurate than forecasts using 
1M cloud microphysical scheme.  

- Spatial verification of LPI (the pq-method) showed that depending 
on the distance limit (15–90 km) and the LPI threshold (from LPI > 0 
Jkg− 1 to LPI > 50 Jkg− 1), the probability of lightning discharge 
occurrence was ca 30–90% and the proportion of successfully pre
dicted lightning discharges varied from 3 to 77%. The low success 
results when inappropriate parameters (LPI threshold in particular) 
are selected. Thus, based on our results one can select a suitable 
distance limit and LPI threshold which optimise the forecast 
accuracy. 

Table 5 
An overview of the mean q values for each tested LPI threshold and distance 
limit. LPI thresholds are given in Jkg− 1.  

Distance 
limit 

LPI > 0 LPI >
10 

LPI >
20 

LPI >
30 

LPI >
40 

LPI >
50 

15 km 0.2145 0.0707 0.0517 0.0410 0.0321 0.0269 
30 km 0.3519 0.1559 0.1250 0.1016 0.0851 0.0703 
45 km 0.4755 0.2466 0.1990 0.1762 0.1555 0.1384 
60 km 0.5953 0.3357 0.2751 0.2414 0.2140 0.1889 
75 km 0.6970 0.4245 0.3436 0.2997 0.2666 0.2272 
90 km 0.7688 0.4808 0.4069 0.3518 0.3088 0.2665  
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Fig. 9. An overview of analysed time courses of both the sum of the LPI prognostic values (blue) and the number of detected lightning discharges (red) over 
corresponding 12-h-long intervals. The vertical dashed lines indicate the beginning of each event. Caption above each diagram gives the date of the depicted event, 
2M stands for the 2M cloud microphysics used in the simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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- In only 4% of all cases (considering 15 min prediction intervals) none 
of all detected lightning discharges were predicted by LPI within the 
maximum tested distance of 90 km.  

- Temporal verification of LPI (considering time courses of predicted 
and detected lightning activity, omitting their spatial location) was 
semi-subjective though successful. In 50% of all cases the time dif
ference between the defined beginnings of forecasted and detected 
lightning activity was up to 15 min, it was up to 45 min in 70% of all 
cases and up to 60 min in 90% of all cases.  

- The temporal approach to verification of LPI offers higher potential 
to use than the spatial approach, which is in good agreement with 
conclusions of Ou Jianfang et al. (2019).  

- In our opinion, the obtained results confirm that the LPI is a suitable 
tool for operative prediction of lightning. At the same time, our 
conclusions support the introduction of 2-moment cloud micro
physics into the numerical weather forecasts. 

Further work should be dedicated to lightning prediction using other 
NWP models, such as the ICON NWP model. In addition, it would be 
worth analysing more recorded thunderstorm events. It would also be 
interesting to compare predicted lightning activity with other types of 
meteorological data (e.g. precipitation, hail, wind gusts). Last but not 
least, it is worth performing assimilation of observed lightning data into 
NWP model, which may improve the spatial and/or temporal aspects of 
LPI forecasts. 
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