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1.— Introduction & Motivation

Due to the importance of a unified theory of quantum mechanics + gravity, and
the existence of a minimal length (Planck scale), we consider

@ A modified Schrodinger equation from a generalized uncertainty principle
(GUP), with a quantum mechanically corrected gravitational interaction. The
resulting equation cannot be solved by common exact approaches = a
Bethe-ansatz approach.

@ Dirac equation with a generalized gravitational interaction which includes
post-Newtonian (relativistic) and quantum corrections to the classical
potential.

The Bethe-ansatz approach is also proposed to attack this challenging
problem.
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Several theories provide a unified description of quantum mechanics and gravity:
quantum gravity, black hole physics, double special relativity, string theory...

The common point in such theories is that they all predict the existence of a
minimal length of the Planck scale

l, = \/hG/c.

This minimal length is equivalent to a generalization of the uncertainty principle
(GUP) that affects the entire physical system.

From the mathematical point of view, in a GUP formalism the Schrodinger
equation is of higher order four, six or more, depending on the choice of the GUP
and the operators involved.

Obviously, those are not well studied problems in mathematical physics, where the
differential equations that appear, whether relativistic or non-relativistic, are of the
first or second order.
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On the other hand, the Coulomb/Kepler potential is obviously the most physical
interaction in common with gravity and quantum mechanics.
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It has been shown that the quantum correction of Coulomb potential will contain
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This is of particular interest to us: what we are going to do next is to analyze this
type of corrected Coulomb potential that includes negative powers up to the
fourth order, which we will call Coulomb—4 potential, within the GUP formalism.
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On the other hand, the Coulomb/Kepler potential is obviously the most physical
interaction in common with gravity and quantum mechanics.

The quantum Coulomb interaction remains an attractive and challenging field of
study and very recent articles continue to discuss related properties.

It has been shown that the quantum correction of Coulomb potential will contain
inverse quadratic, cubic and quartic terms.

This is of particular interest to us: what we are going to do next is to analyze this
type of corrected Coulomb potential that includes negative powers up to the
fourth order, which we will call Coulomb—4 potential, within the GUP formalism.

Roadmap:

(a) Schrédinger equation modified with GUP formalism is reviewed compactly;
(b) Solutions to the ordinary case (without GUP) using the Lie algebraic
approach and Heun functions are investigated,;

(c) Solution to the modified GUP problem are explored;

(d) Ground and first excited states are explicitly determined.
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We start considering a generalized uncertainty principle (GUP) of the form

[Xcvpc]—ih<1+2[;2p> 0<p3<1,

where [ is the original minimal length parameter.
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[XvaG]—’h<1+2h2p 0<p3<1,
where [ is the original minimal length parameter.

The generalized x operator is defined as xg = x, with x and p being the ordinary
position and momentum operators, respectively.
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where [ is the original minimal length parameter.

The generalized x operator is defined as xg = x, with x and p being the ordinary
position and momentum operators, respectively.

In one spatial dimension, and neglecting some high order terms, the above GUP
corresponds to the modified Schrodinger equation
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2.— Quantum Correction to the Coulomb Potential in GUP

We start considering a generalized uncertainty principle (GUP) of the form

[Xcvpc]—ih<1+2[;2p> 0<p3<1,

where [ is the original minimal length parameter.

The generalized x operator is defined as xg = x, with x and p being the ordinary
position and momentum operators, respectively.

In one spatial dimension, and neglecting some high order terms, the above GUP
corresponds to the modified Schrodinger equation

(- + Vi) ) ) =0,

with an effective potential

Vi = 53 (Ve — 69)+ (33) 8 (V00 - &)

with E, the 3 = 0 eigenvalues of the energy and EC the eigenenergies for 3 # 0.
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2.— Quantum Correction to the Coulomb Potential in GUP

We are interested in analyzing a specific problem that could be of great physical
interest: the following quantum correction to the Coulomb interaction that
includes negative powers up to fourth order, that we will call Coulomb—4 potential:

2m o s az a2
§V(X):7+;+;+ij, ag >0, a; <0,
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2.— Quantum Correction to the Coulomb Potential in GUP

We are interested in analyzing a specific problem that could be of great physical
interest: the following quantum correction to the Coulomb interaction that
includes negative powers up to fourth order, that we will call Coulomb—4 potential:

2m « o o o2
3 V(x) —1+7§+7§+X—2, ag >0, ag <0,

which corresponds to the effective potential

_ 0 S I < T e (- S (P T S -]
Ve(X)—’VO+?+;+F+F+;+;+?+;,

in which the ~v;, i =0,1,...8 are as follows
Yo = Bes — e, 71 = a1(1 —2Ben),
Yo =an+ ﬂ(a% — 201€,), 13 = as+ 20 (oo — azen) ,
Y4 = ai + ﬂ(2a1a3 + a% — 20(;2;6,,), 5 = 2ﬁ(a1ai + azas),
Y% =P (2a2az2; - a%) : v = 2Basas, Y8 = Bag,
where we have introduced the notation
€n = 2h—r2n E,, e,? 2h—,2n EnG.
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This problem only makes sense in the half-line, that is, x is always positive and at
the origin it is assumed that there is an impenetrable infinite wall that prevents
the passage of the particle in the other direction.
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This problem only makes sense in the half-line, that is, x is always positive and at
the origin it is assumed that there is an impenetrable infinite wall that prevents
the passage of the particle in the other direction.

Before continuing, it is worth briefly commenting on the choice Coulomb—4
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e The first term is the ordinary Coulomb or gravitational potential: =
X

(0%
e The second term, —
X

the gravitational problem and includes the speed of light, c.

is usually considered to be the relativistic correction to

e Regarding the quantum correction, there is not a quite unified approach, but
almost all existing ones include the inverse cubic term a—; as the necessary
correction to the gravitational potential. x

It should be noted that both the sign and the value of the parameters are quite
different in several articles, which motivates further studies.
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2.— Quantum Correction to the Coulomb Potential in GUP

This problem only makes sense in the half-line, that is, x is always positive and at
the origin it is assumed that there is an impenetrable infinite wall that prevents
the passage of the particle in the other direction.

Before continuing, it is worth briefly commenting on the choice Coulomb—4
interaction:

' . . I L«
e The first term is the ordinary Coulomb or gravitational potential: =
X

(0%
e The second term, —
X

the gravitational problem and includes the speed of light, c.

is usually considered to be the relativistic correction to

e Regarding the quantum correction, there is not a quite unified approach, but
almost all existing ones include the inverse cubic term a—; as the necessary
correction to the gravitational potential. x

It should be noted that both the sign and the value of the parameters are quite
different in several articles, which motivates further studies.

Let us start the analysis of the ordinary case (/3 = 0), as the solutions of the
model with GUP depend on them.
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case J = 0 (not GUP) has already been studied via the ansatz
method. Here, we will obtain the general solutions of the model using the
Lie-algebraic method within the framework of quasi-exact solvability.
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case J = 0 (not GUP) has already been studied via the ansatz
method. Here, we will obtain the general solutions of the model using the
Lie-algebraic method within the framework of quasi-exact solvability.

The Schrédinger equation with Coulomb—4 potential appears in the form

2
dX2+X+X2+X3+X4—6n>¢n(X):O.
Due to the asymptotic behavior of the wave function 1,(x), we use the ansatz

n(x) = x exp [— (x\/—TnJr %)} on(x),  S=1+-— >0,

2(14
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case J = 0 (not GUP) has already been studied via the ansatz
method. Here, we will obtain the general solutions of the model using the
Lie-algebraic method within the framework of quasi-exact solvability.

The Schrédinger equation with Coulomb—4 potential appears in the form
d? a1 ax a3 aﬁ
<—++X2+X3+X4—en Yn(x) = 0.
Due to the asymptotic behavior of the wave function 1,(x), we use the ansatz

Unlx) = 50 exp [= (xv=ea + )] oal), =1+

a
2734 >0,
which transforms Schrodinger equation (9) into the form
{—xzdz —2(as+6x—v/=€xx%) a + (A1 x+ Az)} on(x) =0
dx? dx ’
where

(0%} Oé% a3
A =o1+ 2—|-OT v —¢€n, /\2:a2_?_7+20¢4v_6n~

4
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2.— Quantum Correction to the Coulomb Potential in GUP

We are going to analyze the problem from two different and complementary points
of view: first the Lie algebraic approach and then we will use the Heun functions.
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2.— Quantum Correction to the Coulomb Potential in GUP

We are going to analyze the problem from two different and complementary points
of view: first the Lie algebraic approach and then we will use the Heun functions.

The Lie-algebraic approach: Following the standard idea of quasi-exact
solvability, we find that if the constraint

)\1 = —2n\/ —€np

holds, the Schrédinger equation can then be expressed as a quasi-exactly solvable
(QES) differential operator in the Lie-algebraic form

qus @n(x) = 07
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We are going to analyze the problem from two different and complementary points
of view: first the Lie algebraic approach and then we will use the Heun functions.

The Lie-algebraic approach: Following the standard idea of quasi-exact
solvability, we find that if the constraint

)\1 = —2n\/ —€np

holds, the Schrédinger equation can then be expressed as a quasi-exactly solvable
(QES) differential operator in the Lie-algebraic form

qus @n(X) = 07

with
2
Hoes = ~ T30 + 2 —en T — 200 T — (25 + n) TR = —nd+ e
Here, J J ;
+_ 29 o_,9 N -_ 9
T = x dx nx; In de 2’ In dx’

are the generators of the s/(2) Lie algebra satisfying the commutation relations

[jr;’_ﬂjn_]:_zjl?u [jniajl?]::FJni
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2.— Quantum Correction to the Coulomb Potential in GUP

These operators leave invariant the (n+ 1)-dimensional linear space of polynomials

n
on(x) = Z ck x*,
k=0
where the coefficients ¢, satisfy the three-term recursion relation (c_1 = ¢,+1 = 0)

()\2 —2ké — k(k — 1)) Ckx — 4\/—6,, Ck—1
2(k+ 1) Qg ’

assuming c_1; = 0 and ¢,41 = 0.

Ck+1 = k=0,1,...,n,
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2.— Quantum Correction to the Coulomb Potential in GUP

These operators leave invariant the (n+ 1)-dimensional linear space of polynomials

n
on(x) = Z ck x*,
k=0
where the coefficients ¢, satisfy the three-term recursion relation (c_1 = ¢,+1 = 0)

()\2 —2ké — k(k — 1)) Ckx — 4\/—6,, Ck—1
Q(k—‘y- 1) Qg ’

assuming c_; = 0 and c,41 = 0. Equivalently, the recursion relation (11) can be
rewritten as a tridiagonal matrix equation the nontrivial solutions of which are

Ck+1 = k=0,1,...,n,

)\2 —2044
—2[7\/—6,, ()\2 - 2(5) —4044
=2(n-1)/=e =0.

—2nay

—2y/=€, (n—n?+ Xy —2nd)
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2.— Quantum Correction to the Coulomb Potential in GUP

Note that the last condition imposes severe restrictions on the potential
parameters «;, i = 1,2, 3,4.
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2.— Quantum Correction to the Coulomb Potential in GUP

Note that the last condition imposes severe restrictions on the potential
parameters «;, i = 1,2, 3,4.

On the other hand, from the expressions of A\; and A, the following expression of
the energy in closed form can be obtained

2,2
o7 o

(a3 +2(n+ 1)ag)?’

€Eh = —

provided oy < 0.
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Note that the last condition imposes severe restrictions on the potential
parameters «;, i = 1,2, 3,4.
On the other hand, from the expressions of A\; and A, the following expression of

the energy in closed form can be obtained
02 a2

(a3 +2(n+ 1)ag)?’

€Eh = —

provided oy < 0.

For the sake of clarity, next we will find the explicit solutions of the ground state
and the first excited state.
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2.— Quantum Correction to the Coulomb Potential in GUP

Ground state and the associated wave function

2 2
_ Q7 Qg _ 14as/(204)
o )= e[ (7 %)

where the restriction on the parameters of the potential is determined by
bayal — a3 —2az a4 + 8azy/—ep =

ag

-2 LIS
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2.— Quantum Correction to the Coulomb Potential in GUP

To better capture the meaning of the analytical results found above, next Figure
represents:
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To better capture the meaning of the analytical results found above, next Figure
represents:

On the left, the wave function
of the ground state, together
with the corresponding energy,
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To better capture the meaning of the analytical results found above, next Figure
represents:

On the left, the wave function
of the ground state, together
with the corresponding energy,

W@ e On the right, the form of the potential.
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To better capture the meaning of the analytical results found above, next Figure
represents:

On the left, the wave function
of the ground state, together
with the corresponding energy,

On the right, the form of the potential.
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2.— Quantum Correction to the Coulomb Potential in GUP

First excited state (n = 1) and the associated wave function
The energy and the corresponding wave function are given by

= Oé% Oli — 1+as3/(204) Qg
=—T 2 Y1(x) = (@ +cix) x exp x\/—761+
(a3 +4aa)
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2.— Quantum Correction to the Coulomb Potential in GUP

First excited state (n = 1) and the associated wave function
The energy and the corresponding wave function are given by

2 2
o = — ay 5, ¢1(X) — (CQ—|-C1X) X1+a3/(2a4 exp |: <X /—e1 + )]
(a3 + 4ay)

The restriction on the parameters of the potential is given by
640208 + 1604 (a3 + 4aq)(a3 + 4azay + 802 — 4axal)oy
+(asz + 4ag)? (a3 4 20304 — 4anad)(a3 + 6azas + 8as — 4asal) = 0.
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2.— Quantum Correction to the Coulomb Potential in GUP

First excited state (n = 1) and the associated wave function
The energy and the corresponding wave function are given by

_ af aj _ 1tas/(2as) 04
a=-——""—, i(x)=(otax)x ep |- xWoat )
(a3 + 4ay)

The restriction on the parameters of the potential is given by
640208 + 1604 (a3 + 4aq)(a3 + 4azay + 802 — 4axal)oy
+ (a3 + 404)% (03 + 20304 — 4a202) (03 + 6azay + 803 — danal) = 0.

gz
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The next Figure represents:
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On the left, the wave function
of the first excited state, together
with the corresponding energy,
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The next Figure represents:

On the left, the wave function
of the first excited state, together
with the corresponding energy,
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The next Figure represents:

On the left, the wave function
of the first excited state, together
with the corresponding energy,
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case as a double-confluent Heun equation:
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case as a double-confluent Heun equation: By changing the
independent variable y = 2,/—¢, x, the Schrodinger differential equation

d? d
{X2dx2 -2 (a4 +ox — fe,,x2) ™ +(Aix+ )\2)} wn(x) =0,
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case as a double-confluent Heun equation: By changing the
independent variable y = 2,/—¢, x, the Schrodinger differential equation

d? d
2 2
{X ﬁ72(a4+5X7 enX)dX+()\1X+>\2)}¢"(X):O7
is transformed into the double-confluent Heun equation
2d—2+(—2+ —I—)i—(w +22) ¢ oaly) =0
y dy2 y Py n dy y 2 @nly) =V,

in which we denote  p =24 2%, 7 =4my/—€, w=1+ 7=+ 7.
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2.— Quantum Correction to the Coulomb Potential in GUP

The ordinary case as a double-confluent Heun equation: By changing the
independent variable y = 2,/—¢, x, the Schrodinger differential equation

d? d
{X2dx2 -2 (a4 +0x — fe,,x2) P +(Aix+ )\2)} wn(x) =0,

is transformed into the double-confluent Heun equation

d? d
2 2
{y ?Jr(—y +py+77)dy—(wy+A2)}¢,,(y):0,

in which we denote  p =24 2%, 7 =4my/—€, w=1+ 7=+ 7.

Its regular solutions at origin are given by (hg = 1)

= @n(y;pvnvwv)\Q) = han7
n=0
Ao — 1) —p)h, hp, A
by Qe nln b p e ) = by )by e
(n+2)n U

Consequently, ¢ can admit polynomial solution of degree m if (m + w) and hg11
vanish simultaneously. In this way, general solutions to the problem can be
obtained in terms of the associated Heun functions.
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The GUP case, 5 # 0.
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2.— Quantum Correction to the Coulomb Potential in GUP

The GUP case, 3 # 0.

Having obtained the solutions of the Coulomb—4 model without GUP in the

previous section, let us now return to the modified Schrdodinger equation in a
formalism with GUP, that is, to the equations

[ﬁwu]w(x)—o Velx) o= 200 (V(x) ~ ES)+ <2h,:>2ﬂ(V(x)En)2,
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2.— Quantum Correction to the Coulomb Potential in GUP

The GUP case, 5 # 0.
Having obtained the solutions of the Coulomb—4 model without GUP in the

previous section, let us now return to the modified Schrdodinger equation in a
formalism with GUP, that is, to the equations

[j’iw()]w%x)—o Velx) o= 200 (V(x) ~ ES)+ <2h,:>2ﬂ(V(x)En)2,

To ensure proper asymptotic behavior of the wave function /¢ (x), after
inspecting the differential equation we propose the following ansatz

« b ¢ d
PE) =x W), gx) = —ax— o - 5 - -
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2.— Quantum Correction to the Coulomb Potential in GUP

The GUP case, [ # 0.

Having obtained the solutions of the Coulomb—4 model without GUP in the
previous section, let us now return to the modified Schrdodinger equation in a
formalism with GUP, that is, to the equations

[ﬁwu]w(x)—o Velx) o= 200 (V(x) ~ ES)+ <2h,:>2ﬂ(V(x)En)2,

To ensure proper asymptotic behavior of the wave function /¢ (x), after
inspecting the differential equation we propose the following ansatz

YE(x) = x" BN pS(x),  g(x)=—ax— - — = - g
where ©¢(x) must be a polynomial and the parameters; a > 0,b,c,d >0, f >0

are still unknown, but must be such that the original function ¥¢(x) is square
integrable.
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2.— Quantum Correction to the Coulomb Potential in GUP

The GUP case, [ # 0.

Having obtained the solutions of the Coulomb—4 model without GUP in the
previous section, let us now return to the modified Schrdodinger equation in a
formalism with GUP, that is, to the equations

V)] w00 = 0. Ve = 2 (v - 9+ (25";)2/3(V(x)fn)27

To ensure proper asymptotic behavior of the wave function /¢ (x), after
inspecting the differential equation we propose the following ansatz

U500 = x B pS(),  glx) = —ax— 2 - 5 - 4

where ©¢(x) must be a polynomial and the parameters; a > 0,b,c,d >0, f >0
are still unknown, but must be such that the original function ¥¢(x) is square
integrable.

It can be seen that the previous parameters are determined by:
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2.— Quantum Correction to the Coulomb Potential in GUP

—4
a:\/%: 66%_€;§>07 b=— 778( ;;6/;/8 (0%) 6?
£ 1
4\/— 2 3[ 30[ \/B:
87575 — 46178 + 75
+ 16 (’78)5/2 + 041\/B >
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2.— Quantum Correction to the Coulomb Potential in GUP

—4
a:\/%: 66%_€S>07 b=— 778( ;;6/;/8 (0%) 6?
£ 1
4\/— 2 3[ 30[ \/B:
87575 — 46178 + 75
+ 16 (’78)5/2 + 041\/B >

Then, the differential equation for ¢ (x

)
2
[P 5+ @05 + Wi f oS0 =

simplifies to
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2.— Quantum Correction to the Coulomb Potential in GUP

—4
2= /70 _ BG%—GS > 07 b= — 77 ’76'78

8( )3/2 QR B?

£
4\/— 2 3[ 30[ \/B:
81578 — 461718 + 73
+ 16 (’78)5/2 +(X1\/B>

Then, the differential equation for ¢ (x) simplifies to

)
2
[P 5+ @05 + Wi f oS0 =

where

6d +4cx 4+ 2bx? + 2f x> — 2ax*,
Ws(x) = (b* — 6ad + 4cf — 6¢ — ) + (2(bf — b — 2ac) —
+(f(f — ].) —2ab — ’yQ)X2 — ('Yl + 23f)x3_
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2.— Quantum Correction to the Coulomb Potential in GUP

To find the solution ¢ (x) we use the general Bethe ansatz method, looking for
polynomial solutions of the form

1, n=0,
G o n
P (x) = [Tx-x). neN,

i=1

where x; are distinct roots to be determined.
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2.— Quantum Correction to the Coulomb Potential in GUP

To find the solution ¢ (x) we use the general Bethe ansatz method, looking for
polynomial solutions of the form

1, n=0,
G _ n
P (x) = [Tx-x). neN,

i=1
where x; are distinct roots to be determined.

After some calculations we get the energy relation: for a given n, the energy € is

a? 28e,—1 \?
fg(fnialyﬁ)z—f (W) +B6.

The denominator of the fraction, oy /B + n+ 2, is always positive.
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2.— Quantum Correction to the Coulomb Potential in GUP

To find the solution ¢ (x) we use the general Bethe ansatz method, looking for
polynomial solutions of the form

1, n=0,
G _ n
P (x) = [Tx-x). neN,

i=1
where x; are distinct roots to be determined.
After some calculations we get the energy relation: for a given n, the energy € is

a? 28e,—1 \?
eg(en;alvﬁ):_f (W) +B6.

The denominator of the fraction, oy /B + n+ 2, is always positive.

As in the ordinary case (without a GUP, 3 = 0), we will now look for explicit
solutions for the ground state and the first excited state.
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2.— Quantum Correction to the Coulomb Potential in GUP

Ground state and the associated wave function

For n = 0, the energy of ground state, ¢, is determined in closed form:

2
(60,@17/8) ( 25}—’_2) +ﬁeg.
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2.— Quantum Correction to the Coulomb Potential in GUP

Ground state and the associated wave function

For n = 0, the energy of ground state, ¢, is determined in closed form:

2
(eo,alyﬁ) ( 2ﬁ\jo»+2> +ﬁ€%.

The explicit form of the associated wave function is given by

a VB 202« 2
%/fcf(X)—CoX”“/Bexp[X\/ﬂeg—er et )|

where (g is the normalization constant and the parameters of the potential satisfy
some constraints.
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2.— Quantum Correction to the Coulomb Potential in GUP

First excited state and the associated wave function

For n = 1, the first excited state energy, €, is given by

2 o 2
ef (e1; a1, B) = —% (m> +B6€.

L.M. Nieto (FTAO & SCAYLE) luismiguel.nieto.calzada@uva.es August 27, 2024



2.— Quantum Correction to the Coulomb Potential in GUP

First excited state and the associated wave function

For n = 1, the first excited state energy, €, is given by

2 o 2
S (e1; 01, 8) = —% (m> +B€.

The wave function is explicitly given by

o VB [2a2  «
YE(x) = G (x —x1) x*+ \/Bexp[—xw/ﬁe%—ef—z 3—X§+X—g+

)

where C; is the normalization constant and the parameters of the potential satisfy

some constraints.
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3.— Dirac eqn. with generalized gravitational interaction

In the last part of the talk, the Dirac equation is considered with the recently
proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.
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3.— Dirac eqn. with generalized gravitational interaction

In the last part of the talk, the Dirac equation is considered with the recently
proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.

The general idea in choosing the metric is that the spacetime contributions are
contained in an external potential or in an electromagnetic potential which can be
considered as a good basis for future studies on space quantum communication.
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In the last part of the talk, the Dirac equation is considered with the recently
proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.

The general idea in choosing the metric is that the spacetime contributions are
contained in an external potential or in an electromagnetic potential which can be
considered as a good basis for future studies on space quantum communication.

We also discuss several known generalizations of the Coulomb potential within
this formulation in terms of certain Heun functions.
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proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.

The general idea in choosing the metric is that the spacetime contributions are
contained in an external potential or in an electromagnetic potential which can be
considered as a good basis for future studies on space quantum communication.

We also discuss several known generalizations of the Coulomb potential within
this formulation in terms of certain Heun functions.

Roadmap:
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In the last part of the talk, the Dirac equation is considered with the recently
proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.

The general idea in choosing the metric is that the spacetime contributions are
contained in an external potential or in an electromagnetic potential which can be
considered as a good basis for future studies on space quantum communication.

We also discuss several known generalizations of the Coulomb potential within
this formulation in terms of certain Heun functions.

Roadmap:

(A) A review of the essential formulae of the Dirac equation in the desired metric.
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3.— Dirac eqn. with generalized gravitational interaction

In the last part of the talk, the Dirac equation is considered with the recently
proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.

The general idea in choosing the metric is that the spacetime contributions are
contained in an external potential or in an electromagnetic potential which can be
considered as a good basis for future studies on space quantum communication.

We also discuss several known generalizations of the Coulomb potential within
this formulation in terms of certain Heun functions.

Roadmap:
(A) A review of the essential formulae of the Dirac equation in the desired metric.

(B) Using the Bethe-ansatz approach, we report the general solution for arbitrary
n, in particular solutions for the ground and the first excited states.
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3.— Dirac eqn. with generalized gravitational interaction

(A) Curved spacetime Dirac equation with a generalized metric
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3.— Dirac eqn. with generalized gravitational interaction

(A) Curved spacetime Dirac equation with a generalized metric
The Dirac equation (iv*V,, — mc) W = 0 will be considered for the metric

g = diag (e%(’), —e2() 12 2gin? 9) ,
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3.— Dirac eqn. with generalized gravitational interaction

(A) Curved spacetime Dirac equation with a generalized metric
The Dirac equation (iv*V,, — mc) W = 0 will be considered for the metric

g = diag (e%(’), —e2() 12 2gin? 9) ,

where f(r) and g(r) are arbitrary functions of the radial coordinate, being the
angular parts the same as in (3+1)-Minkowski spacetime.
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3.— Dirac eqn. with generalized gravitational interaction

(A) Curved spacetime Dirac equation with a generalized metric

The Dirac equation (iv*V,, — mc) W = 0 will be considered for the metric
g = diag (e%(’), —e%8( 2 252 9) ,

where f(r) and g(r) are arbitrary functions of the radial coordinate, being the

angular parts the same as in (3+1)-Minkowski spacetime.

In curved spacetime V,, = 0, + iA,/c + Q,, with 0, the covariant derivative on
flat spacetime and €, the spin connection. Choosing A,, = (V/(r), cA/(r),0,0),
the spinor wave function is

Ri(r) VIT12(6, )

\Uc(r,0,¢):N |m| j
iR2(r) y 1/2(97¢)
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3.— Dirac eqn. with generalized gravitational interaction

(A) Curved spacetime Dirac equation with a generalized metric
The Dirac equation (iv*V,, — mc) W = 0 will be considered for the metric

g = diag (e%(’), —e2() 12 2gin? 9) ,

where f(r) and g(r) are arbitrary functions of the radial coordinate, being the
angular parts the same as in (3+1)-Minkowski spacetime.

In curved spacetime V,, = 0, + iA,/c + Q,, with 0, the covariant derivative on
flat spacetime and €, the spin connection. Choosing A,, = (V/(r), cA/(r),0,0),
the spinor wave function is

Ri(r) VIT12(6, )
iR2(r) y‘ml/z(ev ¢)

1 m—1/2
YEH2m g by 1 FIEm+3 Y, (0,9)
| ) =
V2I+1 //:Fm“‘% Ylm+1/2(97¢)

are the spinor spherical harmonics, being Y;™(0, ¢) the usual spherical harmonics.

wc(ra 0’ ¢) =
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3.— Dirac eqn. with generalized gravitational interaction

We manipulate Dirac equation (iv#V, — mc) W = 0 with the assumptions:
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3.— Dirac eqn. with generalized gravitational interaction

We manipulate Dirac equation (iv#V, — mc) W = 0 with the assumptions:
em=h=1, c =1/«, with a being the fine structure constant.
o f(r) = g(r), with () =1+ a2U(r),
e V(r)=az(r) and U(r) = bz(r),
o Ri(r) = @e‘f(’)“ and Ry(r) = Y1) g=f(r)/2,

r

() <u (M), = etinen
o Ar) = 2£ Y2~ U(n)] - 2 [1+02U(n)], €= cos20, 5 =sin2,
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3.— Dirac eqn. with generalized gravitational interaction

We manipulate Dirac equation (iv#V, — mc) W = 0 with the assumptions:
em=h=1, c =1/«, with a being the fine structure constant.
o f(r) = g(r), with () =1+ a2U(r),
e V(r)=az(r) and U(r) = bz(r),
o Ri(r) = @e‘f(’)“ and Ry(r) = Y1) g=f(r)/2,

r

() <u (M), = etinen
o Ar) = 2£ Y2~ U(n)] - 2 [1+02U(n)], €= cos20, 5 =sin2,

and we obtain the final equation for the component p;(r)

d? «a o? e -1
[drz +5(aC = b)Z'(r) = 2(b + €a)z(r) — 5 (aC = bY*2%(r) + —5— | pa(r) =0
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3.— Dirac eqn. with generalized gravitational interaction

(B) Solutions by the Bethe-ansatz approach
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3.— Dirac eqn. with generalized gravitational interaction

(B) Solutions by the Bethe-ansatz approach

Let us consider the potential z(r) as in the previous Schrédinger-like equation

u v
z(r)z;—i—ﬁ—i—ﬁ, u,v,w <0,

that has been investigated before in the GUP framework.
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3.— Dirac eqn. with generalized gravitational interaction

(B) Solutions by the Bethe-ansatz approach
Let us consider the potential z(r) as in the previous Schrédinger-like equation

u v

z(r)=—+

-+ = u,v,w <0,
ror r

that has been investigated before in the GUP framework. Substituting into the
previous Schrodinger-like equation,

dr? a? r S2

r2 r3 rt

d2 -1 2u(ae,+ b 1 /A A A o?(b—aC)? /w2 2w
pAoL Bleth) L o MY 2o sOF (0 2] =,

2248 =
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— + €n = - u(ae,, ) - 2 3 4\ o ( a ) w vw Pl,n(r) _ 07
dr o r S

2 Eta 52 s
where Ay, A3z and A4 are some functions of u,v,w,a, b,«, S, C,¢,. We have
added the index n to € and p;i(r) to distinguish some states from others.
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(B) Solutions by the Bethe-ansatz approach
Let us consider the potential z(r) as in the previous Schrédinger-like equation

u v

z(r)=—+

-+ = u,v,w <0,
ror r

that has been investigated before in the GUP framework. Substituting into the
previous Schrodinger-like equation,
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— + €n = - u(ae,, ) - 2 3 4\ o ( a ) w vw Pl,n(r) _ 07
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where Ay, A3z and A4 are some functions of u,v,w,a, b,«, S, C,¢,. We have
added the index n to € and p;i(r) to distinguish some states from others.

Now, we propose

pa(r) = et Ran(r), A(r) =dInr+ % + g A

where Ry n(r) is a polynomial, and A\, 3,y < 0, § > 0 are parameters to be find.
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3.— Dirac eqn. with generalized gravitational interaction

Consequently, the differential equation for R ,(r) simplifies to

& d SERS¢
3 3 2 2
{r dr2 + (2)\r +26r _26r_4’}/) E—f— <€2r + 9r+9>}R1)n(r) :O7

where &, &1, & are known functions of u, v, w,a, b,a, S, C,€,.
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3.— Dirac eqn. with generalized gravitational interaction

Consequently, the differential equation for R ,(r) simplifies to
d? d £ &
3 3 2 2 1 0 _
{r ﬁ—l—(”\r + 260r —26r—4fy)dr—|—<£2r +§r+§ Rin(r) =0,
where &, &1, & are known functions of u, v, w,a, b,a, S, C,€,.
To solve this equation, we assume R ,(r) to be a polynomial of the form

1, n=0,
Rl,n(r) { H?:l(r - rl')v ne Nv

where r; are distinct roots to be determined. The general solutions are given by
& +2n\ =0,

& +20) i+ n(n—1)+2n6 =0,

i=1
Lo+22> 7 4+2(0+n—1)) r—2n8=0,
i=1 i=1

. - 1 A2 407 —Br—2
the r; given by the Bethe ansatz eqns ——+ ot r'r Bri—2y _
=1, g#i '
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3.— Dirac eqn. with generalized gravitational interaction

Ground state and the associated wave function
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3.— Dirac eqn. with generalized gravitational interaction

Ground state and the associated wave function

For n = 0 it follows that the ground state energy ¢ is given by

—4ac® A%bu? + /802 A2u2(2% — b2)(B — 3A)2 + (B — 3A)*
42202 A2u? + (B — 3A)?

€0 —

with

A= +/a?5%(b— aC)?, B:=a(b—aC)(2au(b— aC) — 35).

L.M. Nieto (FTAO & SCAYLE)

luismiguel.nieto.calzada@uva.es

August 27, 2024

7




3.— Dirac eqn. with generalized gravitational interaction

Ground state and the associated wave function

For n = 0 it follows that the ground state energy ¢ is given by

_ —4aa’ Abu? + /42 A2 (22 — b?)(B — 3A)2 + (B — 3A4)*
o= 42202 A2u? + (B — 3A)? ’

with

A= +/a?5%(b— aC)?, B:=a(b—aC)(2au(b— aC) — 35).

The associated wave function is p; o(r) < €2("), with

_ (3 | aw(b—aC)(2au(b - aC) —35) o 1 1-—é€
A(r)_(2+ 2052 Inr 2 \w 2 a2 "

The potential parameters v and w are given in terms of u,a, b, C, S, «, €.
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3.— Dirac eqn. with generalized gravitational interaction

First excited state and the associated wave function
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3.— Dirac eqn. with generalized gravitational interaction

First excited state and the associated wave function

For n =1, the first excited-state energy, €1, is given by

_ —4aa’ A’bu? £ \/4a? A2u2(a2 — b?)(B — 5A)2 4 (B — 5A)*
‘= 43202 A2 + (B — 5.A)? .
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First excited state and the associated wave function

For n =1, the first excited-state energy, €1, is given by

—4ac’ A?bu? + /42 A2u2(a% — b2)(B — 5.A)2 + (B — 5.A4)*
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€1 =

The associated wave function is py 1(r) o< (r — r;) €2("), with

AC) = <7 aw(b—aC)(2au(b—aC)—3S))nrig(ﬂJrl)i 1-&

= r
2052 rr\w 2 a2

The potential parameters v and w are given in terms of the Coulombic coefficient
uand a, b, C,S,a,e¢.
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First excited state and the associated wave function

For n =1, the first excited-state energy, €1, is given by

_ —4aa’ A’bu? £ \/4a? A2u2(a2 — b?)(B — 5A)2 4 (B — 5A)*
a= 43202 A2 + (B — 5.A)?

The associated wave function is py 1(r) o< (r — r;) €2("), with

AC) = <7 aw(b—aC)(2au(b—aC)—3S))nrig(ﬂJrl)i 1-&

= r
2052 rr\w 2 a2

The potential parameters v and w are given in terms of the Coulombic coefficient
uand a, b, C,S,a,e¢.

The special case of the Coulomb interaction v = w = 0 can be obtained and
compared the existing literature.
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You are welcome to participate! See you next January in Valladolid!
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