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® We consider particles with position-dependent effective mass in double
heterostructures, subject to the action of different non-singular potentials whose
dynamics are governed by the Schrodinger equation.

® The study in this quantum regime allows us to develop a numerical method to
calculate the energy spectrum of these systems. When analytical results are
obtained, the numerical results are consistent with them.

® Once this first objective has been achieved, our interest focuses on the study of
particles whose dynamics are governed by the relativistic Dirac-Weyl type
equations with Fermi speed dependent on the position and the Dirac-type
equation with Fermi mass and velocity dependent on the position.
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Position-dependent mass

5

The time-independent Schrédinger equation in one dimension is the equation that models
the dynamics of a particle of constant mass (m = M) subject to an electric potential

(V(2))-
(ﬁf - E) b(z) = (T FV(z) - E) W(z) =0
where 7' is the kinetic energy operator (KOE) and H is the total energy operator.

~ 1 ~ ~
T=——p H=T )
o7 +V(z)

p= —z’h%, is the moment operator.
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Position-dependent mass

5

The time-independent Schrédinger equation in one dimension is the equation that models
the dynamics of a particle of constant mass (m = M) subject to an electric potential

(V(2))-
(ﬁf - E) b(z) = (T FV(z) - E) W(z) =0
where 7' is the kinetic energy operator (KOE) and H is the total energy operator.

~ 1 N ~
T=-—p% H=T :
o7 +V(2)
D= —z’h%, is the moment operator. Thus, the Schrodinger equation is explicitly stated
as 2
- =F
(~53z 3 + V) ) = Bwta)

©
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Position-dependent mass

® When the mass depends on the position (m = Mym(z)), it becomes an operator
that no longer commutes with the momentum operator (p = —ihdiz).

® |n such a circumstance, it is not trivial to assign the correct order of the operators
(mass and momentum) that make up the kinetic energy operator (KEO).

For practicality, in the following we will adopt the units /> (2M0)_1 =1 @
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Position-dependent mass

® When the mass depends on the position (m = Mym(z)), it becomes an operator
that no longer commutes with the momentum operator (p = —ihdiz).

® |n such a circumstance, it is not trivial to assign the correct order of the operators
(mass and momentum) that make up the kinetic energy operator (KEO).
The operator that covers all the different proposals is due to O. von Ross [11]

1
Tor(a, B) = 5 (m*pm”pm +m™pm”pm’). (1)
wherel
R L d
p= —zhd—; m = Mom(z), (Mo = cte). a+p+~v=-1.
z
For practicality, in the following we will adopt the units /> 2My) ' =1 @
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Position-dependent mass

Then, the Schrodinger equation to solve is

(TVR(O‘wB) + V(Z) - E) Yp=0 (2)

7 CINVESTAV-IPN 28 August 2024



Position-dependent mass

Then, the Schrodinger equation to solve is

(Tyr(o, B) +V(2) —E)¢ =0

which we can write explicitly as

< d 1 d 1(m”(z) m'2(2)>+v(z)—E>w=0. (3)

Cdzm(z)dz 2 VmQ(z) B 77m3(z)

where
v=—1-8 n=-2B+1(a+1) -2
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Position-dependent mass

Then, the Schrodinger equation to solve is
(Tvr(a, B) +V(2) = E)¢p =0 (2)
which we can write explicitly as

< d 1 d _1( m'(z) m/2(2)> +V(z)—E>1/J=0- (3)

Cdzm(z)dz 2 VmQ(z)_nm3(z)

where
v=—1-8 n=-2B+1(a+1) -2

In (3) we will make the variable changes ¥(z) = m(2)"/4¢, p= [+/m(z)dz
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Position-dependent mass

When replacing
ve) =m(:) 1o, p= [ mld (4)

in (3), the function ¢ satisfies the Schrédinger equation with constant ‘mass’
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Position-dependent mass

8

When replacing

ve) =m(:) 1o, p= [ mld *)
in (3), the function ¢ satisfies the Schrédinger equation with constant ‘mass’

Equation associated with (3)

2 ~
-+ (V) - E)s =0, )
~ m'(z)? m' (2
T BT

v=-1-8, n=-28+1)(a+1) - 20> @
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Position-dependent mass

9
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Recapitulating the ideas of this first part, we have the Schrodinger equation with
position-dependent mass

(Tor(a, )+ V(2) —E)h =0

and this equation can be written as a Schrodinger type equation with constant mass
and a effective potential V' which depends on the parameters a and (3, the mass profile
M and the potential V'

2 ~
PO ) - By =0,

where

Vi) = v+ (n+5) o -1 (v45) 21

v=—1-8, n==2B+1(a+1)—-2a% o(z) =m(z)"¢, pz/\/m(z)dz.@
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Boundary conditions

Boundary conditions.

If there is an abrupt, finite change in potential and/or mass at point z;, then the mass
distribution m; (m;41) and the wavefunction v; (1j4+1) immediately to the left (right)
of z; must satisfy the pair of conditions depending on how we choose the values of a
and £.
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Boundary conditions

Boundary conditions.

If there is an abrupt, finite change in potential and/or mass at point z;, then the mass
distribution m; (m;41) and the wavefunction v; (1j4+1) immediately to the left (right)
of z; must satisfy the pair of conditions depending on how we choose the values of a

and £.
If we choose the BenDaniel-Duke OEC (« = 0, 5 = —1) we have the conditions
3,1, 10, 9, 6]
S d 1 d
¥i(2;) = bj+1(2), my 4 (¥(2)),—s, = = Wi+1(2),ey, - (0)
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Boundary conditions

Boundary conditions.

If there is an abrupt, finite change in potential and/or mass at point z;, then the mass
distribution m; (m;41) and the wavefunction v; (1j4+1) immediately to the left (right)
of z; must satisfy the pair of conditions depending on how we choose the values of a

and £.
If we choose the BenDaniel-Duke OEC (« = 0, 5 = —1) we have the conditions
3,1, 10, 9, 6]
L 1d 1 ,
w](zj) - ¢]+1(2‘])7 m] dZ (17/),7( ))z:zj - mj+1 dZ (¢J+1< ))Z:Zj . ( )

On the other hand, if we choose the Zhu-Kroemer OEC (o = —1/2, 5 = 0), the
pair of conditions is 3, 12, 5, 9, 4]
¥i(z) _ Y1) L 4y, =24
VM VMj+1 ’ N dz "’ F=Z5 VMj+1 dz
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Double heterostructures
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Double heterostructure model

For the double heterostructure model we are going to assume that we have an
arrangement like the one in the figure. In this intermediate region, we have a type B
semiconductor and outside a type A semiconductor.

Graphic representation of a double heterostructure.
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Double heterostructure model

For the double heterostructure model we are going to assume that we have an
arrangement like the one in the figure. In this intermediate region, we have a type B
semiconductor and outside a type A semiconductor.

W

Graphic representation of a double heterostructure.

® In the intermediate region, a smooth dependence on the position of the effective
mass of a particle subject to a smooth potential also occurs; outside this region,
the behavior of both profiles is constant.

©
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Modelo de heteroestructura doble

A B A
P u e
Vo mo ;2 < zo,
V(z) =< Vin(z) , m(z) =< mn(z) ; 20<2< 2,
Va ma ;21 <z,
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Double heterostructures

Vb mo ) 2z < 29,
V(z) = {Vin(z) , m(z) = min(z) ; 20<z<z, (9)
Va ma ;21 <z,
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Double heterostructures

Vo mo ;2 < 20,
V(z) = Vin(z) » m(2) =qmn(z) ; 20<2<z, (9)
Va mo ;21 <z,

In the intermediate region the particle obeys the equation (2)

" / 2
( d 1 d 1 (V min(z) _ nmin(z)

Cdzmin(2)dz 2\ min(2)2 min(2)?

> + Vin(2) — E) tin =0, (10)

and in the other regions, behavior is governed by the equations

2
(—Ld? + Vo2 — E) Yo,2(z) = 0. (11)
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Double heterostructures

Vo mo ;2 < 20,
V(z) = qVin(z) , m(z) = min(z) ; 20<z<z, (12)
Va ma ;21 <z,

The complete solution, in the case of bound states, is written as

Yo(z) = Oe* i 2 < 20, (13)
Yin(2) = Py (2) + Qi (2) 5 20 <2<z, (14)
P1(z) = Se™m* o < 2. (15)

no2 = /mo2(Voo — E)y O,P, Q, S They are normalization constants.

15 CINVESTAV-IPN 28 August 2024



Double heterostructures

To these solutions we apply the BenDaniel-Duke boundary conditions (a« = 0, 8 =
—1)[3, 1, 10, 9, 6]

1 d 1

i (25) = j+1(2), (¥5(2)),—s, =

L ()., (16)

m] dz M1 dz
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Double heterostructures

Using the condition BD-D at point zp and z1, we obtain the following system of

equations
Ore™ = Pyl (z0) + Qv (20) = —Px11 — Qxi2, (17)
Se ™ = Pyl (1) + Qui (21) = —Px21 — Qx22, (18)
where
i / i '
e Wl ma @ ey )
Tlo min(Zo) 2 min(z1)
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Double heterostructures

Thus, we have a homogeneous system of linear equations that can be written in matrix

form as
P n(z0) +x11 ¥8(20) + x12 ) < P )
X —( Y in —0. 20
( Q ) ( in(21) + x21 ¥, (21) + x22 Q (20)
For the non-trivial solution of (20) the determinant of X must be zero
IX|=0. (21)

This is a transcendental equation that, as will be seen in the examples, allows us to
calculate the energies of the bound states, EBP-P.
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Double heterostructures

When the condition (general) Z-K [4] is applied to the solution (13-15) at points 2
and z; , we arrive at the same system of equations for P and () but with the changes

Xji = Xji 3 J.t=1,2 (22)
where
: i ' : i '
X1i = — rin{z0) in(2) ;X2 = min{#1) in(2) ;o 1=1,2.(23)
7o Min(2) . 2 Min(2) .

With these changes and the transcendental equation (21), we obtain the energy
spectrum EZK

19 CINVESTAV-IPN 28 August 2024



Método Multi-Step
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Multi-Step Method

We consider a potential and a position-dependent effective mass distribution given by

6L
sk
Vo mo; z < 20,
|41 mi; 20 <z < 21, 4f
Vjmj
Vo ma; 21 <2< 29, af
Ve ={. . me) = v
V}' mj; Zj—1 SZ<2’]’7 2
n:
Vn M Zn—1 < z.

These equations define the value of the potential Vj, the effective mass m; and the
solutions 1); in each j-th region (j =0,1,2,...n) of one-dimensional space.
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Multi-Step Method

Regardless of the values of a and /3 the solutions in each interval will be

Vi(2) = A% 4 Bjem ™% k= [my(E V). (24)
These solutions must satisfy at points z; some of the conditions (16) u (8). From
the coefficients A; and B; we obtain reflection coefficient R. through the reflection

amplitude R = %’. The reflection (transmission) coefficients R. = |R|* (T. = |T|?),
satisfy R. + T, =1.
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Boundary conditions

If we apply the boundary conditions to the functions 1); at a point z;

() = Aje™9% + Bjem ™% apiia(z) = Ajpae™T + Byygesine
then
. r J+1 —21k1+1z]
& - i At e2tkizj (25)
A Tt AJ+1 e~ 2ikj+1%;
where
_ kjpj —kjvip;
32 o ks :
jHg + Rj1p5
23  CINVESTAV-IPN
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R for a single interfaces (n = 1)

For a single interface, we have two functions
Po(2) = Age™* + Boe ™07y (2) = A1e™1* + Bie 1

with By =0 and 25 = 0, so

o2k
& Tt + A H e o2ik52j
A] 1 + ,r.] 21]{3]4,_1,2]
B kopo — k
R— 20 _ _ koto 190 (27)

— =T =
A kopo + K1po
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R for two single interfaces (n = 2)

In this case, we have three functions
Yo(2) = Age™™* + Boe 0% py(2) = A1 + Bie 12 qhy(2) = Agett?

(B2 = 0). Using equation (25) for the coefficients of the three functions, we have the
relationships
BO ,',101 + & 727:’6120 Qikozo & _ ,',.12 + & 72’”@221

2ik‘1Z1 _ 2iklzl
= rige . (28
Ay 1 —1—7“01 Le —2ik1zo A1 —|—T‘12 Ze ~2ikaz 2 (28)

Thus, the reflection coefficient is

By ro1 + rige?ikiwn

Ap 1 + 7“017“1262““1“’1

(29)

where we define wy = 21 — 2zg and 29 = 0.
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R for n interfaces

The recursive formula, using the condition BD-D, for the reflection amplitude of the
system described by Eq. (24) is 2
By ro1 + rig. peher

R=ro12.n=—— = -
T Ay 1+ roririg. pe2iiwn’

2ik:
— r12 + r23...ne 2wz (30)
r12.m = 1 2ikows
+ T12723..n€

>
7
—
|
=
3

Tn—1,n = )

where the quantities have been defined

klk’% k;

Wi = 2; — Zi_1 T = = —,
J J J ) J J

k; + k mj

2The reflection (transmission) coefficients R, R|? T satisfy R, + 1. = 1. @
26 CINVESTAV-IPN ( ) =1 2|8 Aggust 20J | ). y *



R para n interfaces

If the condition Z-K is considered, the recursive character of the formula (30) is
maintained but the quantity 7,1, changes to

kn—l - kn
n—1ln — 7, 7 - 1
1, k'nfl + kjn (3 )
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Discretization of smooth profiles

Figura: (a) Arbitrary smooth function f(z) Figura: (b) Discrete representation of f(z)

Given an arbitrary smooth function f(¢) of mass or potential (a) it can be discretized
through a succession of constant finite steps (b) given by Eq (24).

The poles of the coefficient R, are approximations to the eigenvalues of the smooth

problem.

o
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Applications

- i)
mm
N
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Symmetrical mass and potential distributions

We consider the symmetric model given by the following potential and mass distribution

Vo mo i 2 <20 <0,
2 2
V(z) = Vim(z) = =1k » m)={mn(2) =177 5 20<z<z, (32)
Va ma ;21 <z,
Graph shows the symmetric mass distribution and 15 E N i
potential well of equation (36) as functions of z; ! AN i
. 10+ ! 7 \ |
o =4,u=3,20=—2.21 = |20] and py, o are arbi- b N
trary real parameters. We define Vin(20) = Vo = Va SsF i S N
and min(20) = mo = ma. Thus V(2) and m(z) are ~ F--===------ v R ),
continuous. of ! ! Vi
s AN / i
‘ ! ‘ | ‘ s
-4 -2 0 2 4
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Position-dependent mass

Remembering, when we replacing

(z) = m(z)/4g, / Vm(@)dz, (33)

in (3), the ¢ function satisfies the Schrodinger equation with ‘constant mass’

Equation associated with (3)

d? ~
_ﬁ + (V(p)— E)p=0, (34)
_ m, p 2 m/l z
Vip) =V(z) + % <77 + ;) m((z))3 - % <” * ;) m(i); 32)
v=-1-8, n=-2(8+1)(a+1)—2a> @
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Symmetrical mass and potential distributions

Vo mo ;2 <z <0,
2 2
V(z) = Vi(z) = =352, mz)={mun(z) =152 5 20<2<z, (36)
Vo ma ;21 < %,

(39) is the solution of the equation (modified Pdschl-Teller potential [2, 7])

d2¢+<n2+A(A_l) ! >¢:o. (37)

dp? o2 cosh? =

By solving the equation in complete one-dimensional space, with the condition that its

solution vanishes at infinity, the energy spectrum (k? = E — fl/élfn_?’”) is
A—1-n)2 1/44+2n-3
E, - . n)” 1 A 2 0,1,2. A 1. (38)
o o

©
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Symmetrical mass and potential distributions

The solution is

o2 \* 1 1 13
! _ 2\2/2 1 1 13
Yin(2) <71 22> (1+2%) {PgFl <a,b,2, z>+Qz2F1 (a+2,b+2,2, z>} (39)

with
—1()\+' ) b—l()\—' )
a—2 1KO), =3 1KO).

where

1/4+2n—3v

K2 =F 3
o

. AMAN=1) = —(1/4 + 4v — 20 — p%0?).
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Symmetrical mass and potential distributions

o> N s 1, 1,13
in(z) = —— 1+2 PxoFi|ab =;—2°" | +Q X 2zF a4+ =,b+ =, —;—2 .
¢m() <1+22> ( ) { ) 727 Q 27 2727
Eg . V(z)
V(z) Es
NN R ST Es [
"""""" ‘\_l; »‘\__/’ [ e ‘\"4 v ‘\‘ /_________53__
KRS ‘\ 1' ‘\ -~
_________________________ L e B2 ol
I v/l Er
L "8 » N B 8l
” 2 2 7 = 2 2 s
Figura: Even wavefunctions for energies

Ey = —1.96428, Ey = —3.5013,
E4 = —5.6250 and Eg = 8.25.

34 CINVESTAV-IPN

Figura: Odd wave functions for energies
FE; = —2.63724, F5 = —4.50009 and

Es = —6.8750.
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Table A

Symmetrical well and mass

Heteroestructura doble (36) (0 =4, = 3,20 = —2)
Condicién BD-D

Ey Ey Es b3 Ey Es Es
Ec. Transcendental , EB>P 825  -6.875 -5.625 -4.50009 -3.5013  -2.63724 -1.96428
Polos de REP-P -825  -6.875 -5.625 -4.50009 -3.5013  -2.63724 -1.96428
Ec. (38), E, -825  -6.875 -5.625 -4.5 -35 -2.625  -1.875
Condicién Z-K
Ec. Transcendental , EZX  -8.3099 -6.92907 -5.6745 -4.54428 -3.53809 -2.66042 -1.94466
Polos de RZK -8.3009 -6.9207 -5.6745 -4.54428 -3.53890 -2.66042 -1.94466
Ec. (38), E, -8.3099 -6.9297 -5.6745 -4.54430 -3.539103 -2.65890 -1.90370

Values of the energies of the bound states of the symmetric potential well with
symmetric position-dependent mass with parameters 0 = 4, 4 = 3, z9 = —2 using the
BD-D and Z-K conditions .
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Double asymmetric parabolic quantum well

Finally, a potential function and a position-dependent mass function are analyzed, both
modeled by a pair of asymmetric parabolic wells given by the equations

1 mq ; z<b
f(z m mog —m1)f(z) ; b<z c,

V() =VO0e50 » m(z) =i st © cc-ca (40)
1 mo ;o d< z.

where 03— 103
0.25+ B

PO Gl R V) Gl R0

((c=a)/2)* (d=o)/2)* = 5 CE
= o5t 1015

Graph showing the asymmetric parabolic quantum L Y] o1 E

well as a function of z; Vo = 0.3 eV, a = 9.4 nm, 0,05 lo.os

b=11nm, c=25nm,d = 31 nm, m; = 0.0665m, ol lo

and mo = 0.0960m. (m.= rest electron mass) 0
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Table D

Double heterostructure (40)
(Vo=0.3eV,a=94nm, b= 11 nm, ¢ = 25 nm,
d =31 nm, m; = 0.0665 m., and mg = 0.0960 m,; [E,] = meV.)
By Ey Es D%
Ref [8] 50.527710 117.369463 156.513093 0.009 %

Poles of RBP-P 505284  117.34107  156.51738 6,974
Poles of RZX 541197  130.65338  160.38424 = '°

Energy values (meV) for the first three bound states
with constant mass m* = mq = 0.0665 m,

R. poles 44.3005 109.30502  134.58205

This example cannot be solved analytically (we couldn’t). The energies of the bound
states were obtained numerically in [8] using functions of the orthonormalized basis
of the infinite square potential, here we obtained them by the multi-step method and
compared them with those reported in [8]. @
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Double asymmetric parabolic quantum well

L]

ks Observation: The emission frequency w and
\-\"M"m the gain of the laser are theoretically diffe-
ficentero g T rent depending on the initial choice of the
PSS — R Liser ambiguity parameters o« and 3 of the kine-
Ml tic energy operator and not due only to the

K ; geometry of the system.

When using the BD-D condition, the difference between |E3 — Ey| = 39.17631 eV, with
the Z-K condition we have |E3 — Ea| = 29.730844 eV, while the difference |E3 — Ej|,
which is the excitation energy needed for the electron to change from the ground state
to the second excited state, essentially remains the same in both cases (105.98898 eV;
106.264524 eV)

©
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Conclusions

® The energy spectrum (number of bound states and energy values) is sensitive to
the mass profile used and in some cases the use of one boundary condition or
another significantly influences the energy value.
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Conclusions

® The energy spectrum (number of bound states and energy values) is sensitive to
the mass profile used and in some cases the use of one boundary condition or
another significantly influences the energy value.

® The examples studied show that the average percentage difference between the
spectrum obtained using the BD-D condition and that obtained using the Z-K
condition increases when the rate of change in the mass profile tends to be large.
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Conclusions

® The energy spectrum (number of bound states and energy values) is sensitive to
the mass profile used and in some cases the use of one boundary condition or
another significantly influences the energy value.

® The examples studied show that the average percentage difference between the
spectrum obtained using the BD-D condition and that obtained using the Z-K
condition increases when the rate of change in the mass profile tends to be large.

® The multi-step method can be used as a useful tool to solve the Schrodinger
equation.
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Conclusions

® QOur methodology allows us to calculate the energy spectrum of double
heterostructures for any ambiguity condition, as well as for potentials and masses
that can be approximated by the equation (24).

40 CINVESTAV-IPN 28 August 2024 c



Conclusions

® QOur methodology allows us to calculate the energy spectrum of double
heterostructures for any ambiguity condition, as well as for potentials and masses
that can be approximated by the equation (24).

® We have shown quantitatively that the gain of the semiconductor laser diodes
discussed in the reference [8] is strongly affected by the model ambiguity
hypothesis. This evidences the emergent, and not “first principles”, character of
the Schrodinger equation with position-dependent effective mass as discussed in
the introduction of the thesis.
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Thank you!
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