Magnetic quantum graphs with time-reversal

non-invariant vertex coupling

Marzieh Baradaran
Univerzita Hradec Krilové, Czechia

joint work with Pavel Exner and Jifi Lipovsky

M. Baradaran, P. Exner, and J. Lipovsky, J. Phys. A: Math. Theor. 55 (2022) 375203.
M. Baradaran, P. Exner, and J. Lipovsky, Ann. Phys. 454 (2023) 169339.
M. Baradaran, and P. Exner, J. Phys. A: Math. Theor. 57 (2024) 265202.

AAMP XXI, Prague, August 29, 2024

= Liniverzits Hradeo Krilove
“f Piredowideckd fakulta

Marzieh Baradaran (UHK) AAMP XXI 1/20



Quantum graphs

A metric graph consists of a set of edges and vertices; each edge is assigned a
positive length ¢; and therefore identified with an interval [0, 4;].

We associate with the graph the Hilbert

space H - @J’V:l Lz([O,EJ]), the Source: the cited book
elements of which are ¥ = {4);}.

Q G. Berkolaiko, P. Kuchment:/Introduction to Quantum Graphs, AMS, Providence, R.l., 2013.
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Quantum graphs

A metric graph consists of a set of edges and vertices; each edge is assigned a
positive length ¢; and therefore identified with an interval [0, 4;].

We associate with the graph the Hilbert
space H - @JN:]_ Lz([O,EJ]), the Source: the cited book
elements of which are ¥ = {4);}.

Quantum graph is a metric graph equipped with a differential operator
(acting on the graph edges) accompanied by appropriate vertex conditions.

@ In the presence of a magnetic field, the Hamiltonian acts as the
magnetic Laplacian, (—/V — A)2, assuming h =2m = 1.

@ To make such a Hamiltonian a self-adjoint operator, one has to match the
functions 1); properly at each graph vertex.

& G. Berkolaiko, P. Kuchment:/Introduction to Quantum Graphs, AMS, Providence, R.l., 2013.
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Vertex coupling

At each vertex v connecting n edges of the graph, the self-adjointness is
ensured provided the functions at the vertex are matched through the
condition

(U-NHw, +i(U+ I(DVv), =0,

where U is an n X n unitary matrix, D := d% — i Aj is the quasi-derivative
operator, A; is the tangential component of the magnetic vector potential
on the jth edge, W, and (DV), are the vectors of the boundary values of
functions and their (outward) quasi-derivatives.
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Vertex coupling

At each vertex v connecting n edges of the graph, the self-adjointness is
ensured provided the functions at the vertex are matched through the

condition
(U-NHw, +i(U+ I(DVv), =0,

where U is an n X n unitary matrix, D := d% — i Aj is the quasi-derivative
operator, A; is the tangential component of the magnetic vector potential
on the jth edge, W, and (DV), are the vectors of the boundary values of
functions and their (outward) quasi-derivatives.

The most commonly used coupling conditions:

@ J-coupling, and in particular, Dirichlet and Kirchhoff conditions;

corresponding to the choice of U = nfiaj — 1.

@ ¢’-coupling, and in particular, Neumann and anti-Kirchhoff conditions;
corresponding to the choice of U =1 — ﬁj.
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Vertex coupling of a preferred-orientation

@ introduced by Exner and Tater

Phys. Lett. A 382 (2018).

@ motivated by the application to model the anomalous Hall effect

@ the coupling matrix

010 00
00 1 00

U=+R:= :
000 01
100 00
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Vertex coupling of a preferred-orientation

@ introduced by Exner and Tater

Phys. Lett. A 382 (2018).

@ motivated by the application to model the anomalous Hall effect

@ the coupling matrix

01 0 0 0
0 0 1 0 0
U=+R=: © © .1
0 00 ... 01
1 00 ... 0O

In the component form, the conditions (R coupling) are

(jr1 =) +1(Dyj1 + D) =0, j=1,...,n,
for a vertex of degree n where D := % — A
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Asymptotics of the preferred-orientation coupling

The transport properties of the vertex at high energies depend on the
vertex parity; the vertex remains transparent if it is of an even parity, while
for the odd ones, we get an effective decoupling of the edges.
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Asymptotics of the preferred-orientation coupling

The transport properties of the vertex at high energies depend on the
vertex parity; the vertex remains transparent if it is of an even parity, while
for the odd ones, we get an effective decoupling of the edges.

@ Denoting n := % a straightforward computation gives [1]
2

11 12 —i—1)mod N
5U(k)=1_,,7/v{—771_,,725u+(1—5u)77(’ mod N)
in particular,for N = 3,4, we get
=11 n -n 1 0 7
__l4m [T o _ L |7 -n 1
53(k)—m ( 7 e ln) ; 54(k)—777 2 1

-

o We see that limy_,o, S(k) = I if N is odd, while for N even the limit
is different from the unit matrix.

0 1P Bvner and M. Tater. Phs Lett. A 382 {2018
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Previous results on preferred-orientation coupling;:
non-magnetic quantum graphs

@ spectral properties of different types of lattices and array of loops
@ asymptotic behavior of the spectral bands and transport properties in
the high-energy regime
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Magnetic generalizations of the previously studied
non-magnetic models

+ Source: the cited paper
% e

@ square lattice (d, = 4): the spectrum is dominated by bands.
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Magnetic ring chains

We consider an array of rings, coupled either tightly or loosely through connecting links,
in a homogeneous magnetic field B = (0,0, B). The magnetic potential is supported on

the loops at which the Hamiltonian acts as 1) — —D?1); where D := & — j A;.

@ loosely connected rings, ¢; # 0 (d, = 3)
@ two limiting cases, /1 =0 or £ =0 (d, = 4)
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Magnetic ring chains

We consider an array of rings, coupled either tightly or loosely through connecting links,
in a homogeneous magnetic field B = (0,0, B). The magnetic potential is supported on
the loops at which the Hamiltonian acts as 1) — —D?1); where D := & — j A;.

@ loosely connected rings, ¢; # 0 (d, = 3)
@ two limiting cases, /1 =0 or £ =0 (d, = 4)
@ according to Floquet-Bloch decomposition theorem, we consider an elementary cell

@ for positive energies E = k* > 0, the Ansatz for the solution is

(ajr e 4 a; e’”‘x)ei A%, for negative energies, one replaces k by ik with k > 0
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To find the spectral condition, the functions have to be matched through
@ the preferred-orientation coupling at each vertex

@ Floquet conditions at the free ends of the cell

Theorem (Baradaran, Exner, Lipovsky, 2022)

@ For A € Z, the spectrum is the same as that for non-magnetic chain.

@ For A — % € 7, depending on ¢;, i = 1,3, flat bands occur at the

energies k* = % (n — %)2 with g, n € N where g is odd.

@ Away from those flat bands, the spectrum is absolutely continuous
having a band-and-gap structure; it has infinitely many gaps in its
positive part.

@ The negative spectrum consists of a pair of bands which may merge

at particular values of the parameters.
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@ we have the following spectral patterns

@ the probability of belonging to the spectrum, proposed by Band and
Berkolaiko [1], for graphs with Kirchhoff vertices

Po(H) = Jim & |o(H) N[0, K]
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The magnetic field influences the probability of the limiting cases only:

@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
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The magnetic field influences the probability of the limiting cases only:

Probability

@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
@ tightly connected rings, {1 = 0 (d, = 4):
J+2A—442 (Amod}) ... L#m, £40Q

1— % arccos (cos 2Aw) . b3=m

PG(H):{
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The magnetic field influences the probability of the limiting cases only:

@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
@ tightly connected rings, {1 = 0 (d, = 4):
Po(H) J+2A—442 (Amod}) ... L#m, £40Q
7 12— L arccos (cos2AT) N
s
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@ the limiting case when (3 =0 (d, = 4) and (1 ¢ 27Q: P,(H) = %
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The magnetic field influences the probability of the limiting cases only:
@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
@ tightly connected rings, {1 = 0 (d, = 4):

1 2 1 £
5 T2A—4A° (Amod3) ... L#m, £¢Q
Po(H) = 3
S(H) =42
1 — - arccos (cos 2Ar) . b3=m
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@ the limiting case when (3 =0 (d, = 4) and (1 ¢ 27Q: P,(H) = %

The Band—Berkolaiko universality holds whenever the edges are incommensurate.
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Square lattice
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The spectral condition is determined by solving a system of 4q linear equations.

@ band spectrum for ® =7 (¢ =2 and p = 1)

0 5 10 15 20
" k

e pairs of wide bands determined by the condition —1 < cos2k <0

e pairs of narrow bands in the vicinity of the roots of sin? k of the width
AE,p=2(v2—-1)+O(n"2) and AE,, =4+ O(n2)
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The spectral condition is determined by solving a system of 4q linear equations.

@ band spectrum for ® =7 (¢ =2 and p = 1)

2 o 5 10 15 20

K k
e pairs of wide bands determined by the condition —1 < cos2k < 0

e pairs of narrow bands in the vicinity of the roots of sin? k of the width
AE,p=2(v2—-1)+O(n"2) and AE,, =4+ O(n2)

@ band spectrum for ® =275 (g=3 and p=1,2).

2 | — W I mE (I F EE | I EE | N EmE | EmNE | EmE

1)1 (] 1 11 | Wm ¥ || WEm § || EEm§ || EEME§ | EmE | EmE

2 . 0 5 10 x 15 20
e series of ‘three’ wide bands determined by the condition

—1< —3cos (k+ 2L3p) — 3 cos (k - %Tp) —9cosk —4cos3k <1
e series of ‘three’ narrow bands with asymptotically constant width
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@ band spectrum vs. the flux ratio Q% = g with g € {2,...,12} and p=1,...,q—1

@ At low energies, the effect of the vertex condition is dominant.

@ in the high-energy regime, it is the magnetic field which dominates restoring
asymptotically the familiar Hofstadter's butterfly pattern (or the solution of the
almost Mathieu equation)

@ there are series of narrow bands, appearing between each pair of butterflies, with
asymptotically constant width
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Figure: The asymptotic shape of the butterfly part of the spectrum. At the top
and bottom, the spectral bands of the non-magnetic case are shown.
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@ the probability of belonging to the spectrum, P, (H) := limk— o0 % |o(H) N [0, K]|

Probability

0.0 0.2 0.4 0.6 0.8 1.0

d

)
Figure: The probability P,(H) versus the flux ratio % = g with g € {2,...,12}

and p=1,...,q—1.

@ with increasing g, the number of bands increases while the probability
quantity decreases: the spectrum could be fractal, in fact a Cantor
set, for irrational flux ratios
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@ we compare the obtained probabilities with the Thouless conjecture
for the almost Mathieu operator

lim glo(® = 27r§)| _ 10Cca

q—o0 ™

where Ceag = > en(—1)"(2n +1)72 ~ 0.9159...
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Figure: Comparison of P,(H) to the Thouless conjecture values indicated

by the red diamonds.
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A recent modification of the model: Cairo lattice example

" . - !
Baradaram - WImTExmer, P

: — : — - - - —— ———

' : 5 5 : J : J. Phys. A: Math. Theor.

S NN s H 1 y 57 (2024) 265202.

= . = 4

L] L]
L - ow P

[ L]

@ we consider a Cairo lattice with the edges lengths a and b= (v/3 — 1)a

@ choosing U = £R, the coupling conditions are

(i1 F W) + ila, (F¢j1 +4j) =0, d,=3,4
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@ we consider a Cairo lattice with the edges lengths a and b= (v/3 — 1)a

@ choosing U = £R, the coupling conditions are

(i1 F W) + ila, (F¢j1 +4j) =0, d,=3,4

R coupling at all vertices results in PG(HZZ) =0 for any 3,04 >0 J
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@ we consider a Cairo lattice with the edges lengths a and b= (v/3 — 1)a

@ choosing U = £R, the coupling conditions are

(i1 F W) + ila, (F¢j1 +4j) =0, d,=3,4

R coupling at all vertices results in P(,(Hgf?h) =0 for any 3,04 >0 J

@ the limit £3 — 0, changes the R coupling to the Kirchhoff one; Py (Hy [\ ) ~ 0.82

@ imposing R at d, = 4 and —R at d, = 3, again, we get PJ(HZ;Z) ~ 0.82
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(a) the model with R coupling in (b) the model with (=1)% R
the limit 43 — 0 coupling

Figure 1: The grey shaded area equals to 47° P, (H); the axes correspond to x := /3 ka
and y := ka in the high-energy regime k — oc.

This conclusion is not only numerical; we see that the asymptotic
conditions giving rise to these regions are obtained one from the other
through the transformations x <+ x + 7 and y <+ y — 7.
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Thank you for your attention!
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