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. 1D stationary Dirac equation
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Paul Adrien
Maurice Dirac
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Basic Potential W

Symmetric with respect to the origin




' Effective
LW 1D stationary Schrédinger equation | ~AMP-2024
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AAMP-2024 Effective Schrodinger potential
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Dirac pseudoscalar interaction potential in the
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positive semi-axes X >0
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For a positive W, this potential forms a potential well.
The strength of this term defined by the value of the parameter
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Two effective Schrodinger =
potentials for the region X >0 {;’E \®

Effective Schrodinger Potential
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Particular case of the first Stillinger potential
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This potential is attractive in the vicinity of the origin

10




2 Two effective Schrodinger =
potentials for the region X >0 {;’E \®

Effective Schrodinger Potential
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Particular case of the second Exton potential
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This potential is repulsive in the vicinity of the origin
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Effective Schrodinger potentials
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Solution and bound states




Solution of the Schrodinger equation for the
first Stillinger potential
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Wave function for bound states on the
interval X e (0,+400)

X—0:
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Two wave function components are not
Independent
They are connected via the following relations
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E —mc?

_ Wy, —ichy,
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The relation between wave function components
does not allow

A =0

It Is impossible !!
Why?
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Wave component /-
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A fundamental requirement of quantum mechanics is

that the wave function is finite everywhere

Ay

must be zero
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avponos  EXact elgenvalue equation for the
bound state energy spectrum
A, =0:
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Approximate energy spectrum when W, =0
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AaMP-2024  Approximation of the eigenvalue equation

For high-lying levels, one can apply the Airy-function approximation to
the Hermite function for the left transition region —A ~ —/2a
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Approximate spectrum with the potential term \y, x~%/3
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The dependence of )

on energy
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Discussion

We have examined an analytically solvable pseudoscalar interaction
potential for the one-dimensional stationary Dirac equation

The general solution to the Dirac equation is written in terms of non-
Integer index Hermite functions and confluent hypergeometric functions

We have derived the exact equation for the energy spectrum, developed
an approximation for the spectrum

. . -1/3
Our results demonstrate that the inclusion of the X term has a
significant impact on the energy spectrum and eigenfunctions,
particularly, on the low-lying energy levels.

These results indicate that the pseudoscalar interaction potential with an
x U3 term can be used to model a variety of physical systems,
particularly low-dimensional systems such as graphene, semiconductor
nanostructures, or topological insulators, where relativistic effects and
confinement are significant factors
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Future Directions

v" Addition of \ector Potential

v" Scalar Potential

v Thecase X <0

v

v Applications
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