

FISPACT-II & TENDL Verification and Validation processes

J.-Ch. Sublet, M. Gilbert and M. Fleming

International Atomic Energy Agency Nuclear Data Section

United Kingdom Atomic Energy Authority Culham Science Centre

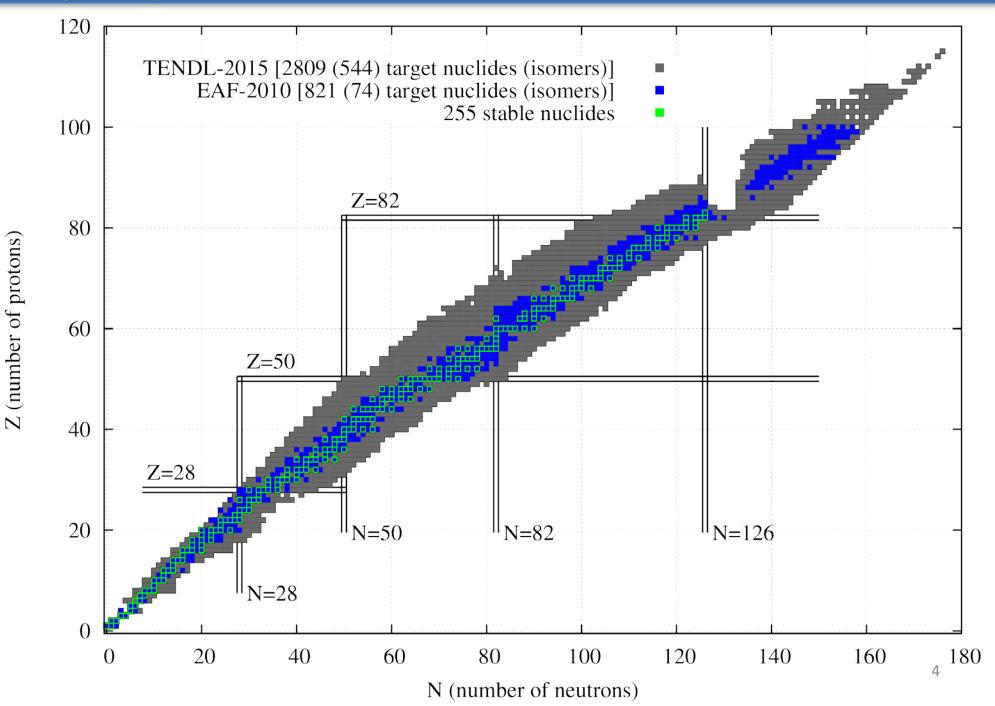
- Validation: have we build the right simulation toolkits?
- Verification: Have we build simulation tools that gives the right answer?

Validation is concerned with checking that the system will meet the needs, while verification is concerned with whether the system is well-engineered, error-free,...

V&V on nuclear data need to be seen as a toolbox, with a wide range of tools: FISPACT-II is one very potent toolbox, with many tools

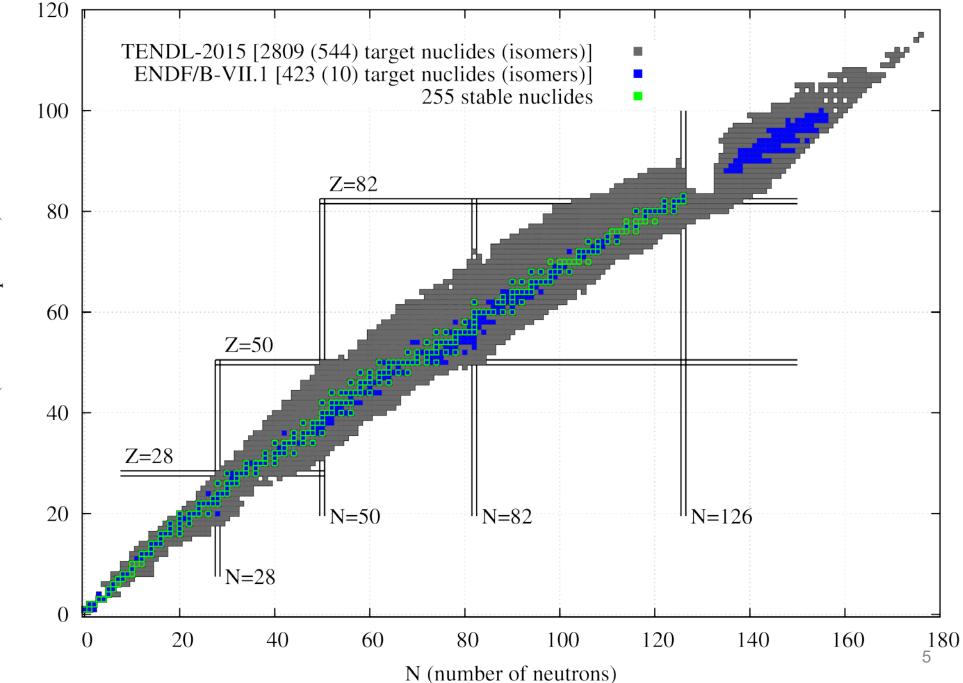
60 Years Nuclear landscape: elemental periodic table

1	Periodic Table of the Elements												18				
Hydrogen 1.008	2	Т	TENDL-2017 covers 113 elements 13 14 15 16 17											He Helium 4.003			
3 Lithium 6.941	4 Be Beryllium 9.012		5 6 7 8 9 B C N 0 F Boron 10.811 12.011 14.007 15.999 13.998											10 Neon 20.180			
11 Na Sodium 22,990	12 Mg Magnesium 24,805	3	13 Al Si Si Silicon Sulfur Cl Aluminum Silicon Phosphorus Sulfur Cl Chlorine										18 Ar Argon 39,948				
19 K Potassium 39,098	20 Ca Calcium 40,078	21 Sc Scandium 44,956	22 Ti Titanium 47,867	23 V Vanadium 50.942	24 Cr Chromium 51,996	25 Mn Manganese 54,938	26 Fe Iron 55.845	27 Co Cobalt 58,933	28 Ni Nickel 58,693	29 CU Copper 63,546	30 Zn Zinc 65.38	31 Gallium 69,732	32 Ge Germanium 72.631	33 As Arsenic 74,922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 84,798
37 Rb Rubidium 84.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112,414	49 In Indium 114.818	50 Sn Tin 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 lodine 126.904	54 Xe Xenon 131.294
55 Cs Cesium 132.905	56 Ba Barium 137.328	57-71 Lanthanides	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.085	79 AU Gold 196.967	80 Hg Mercury 200.592	81 Tl Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103 Actinides	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 HS Hassium [269]	109 Mt Meitnerium [278]	110 Ds Darmstadtium [281]	111 Rg Roentgenium [280]	112 Cn Copernicium [285]	113 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Moscovium [289]	116 LV Livermorium [293]	117 TS Tennessine [294]	118 Og Oganesson [294]


57 La Lanthanum 138.905	58 Ce Cerium 140.116	59 Pr Praseodymium 140.908	Nd	Pm Promethium	Sm	Eυ	Gd	Tb	Dy	Ho Holmium	68 Erbium 167.259	Tm	70 Yb Ytterbium 173.055	71 LU Lutetium 174.967
89 Ac	⁰Th	Pa			94 Pu	95 Am			⁹⁸ Cf	99 Es	Fm			103 Lr
Actinium 227.028		Protactinium 231.036		Neptunium		Americium	Curium	Berkelium			Fermium 257.095		Nobelium 259.101	Lawrencium [262]

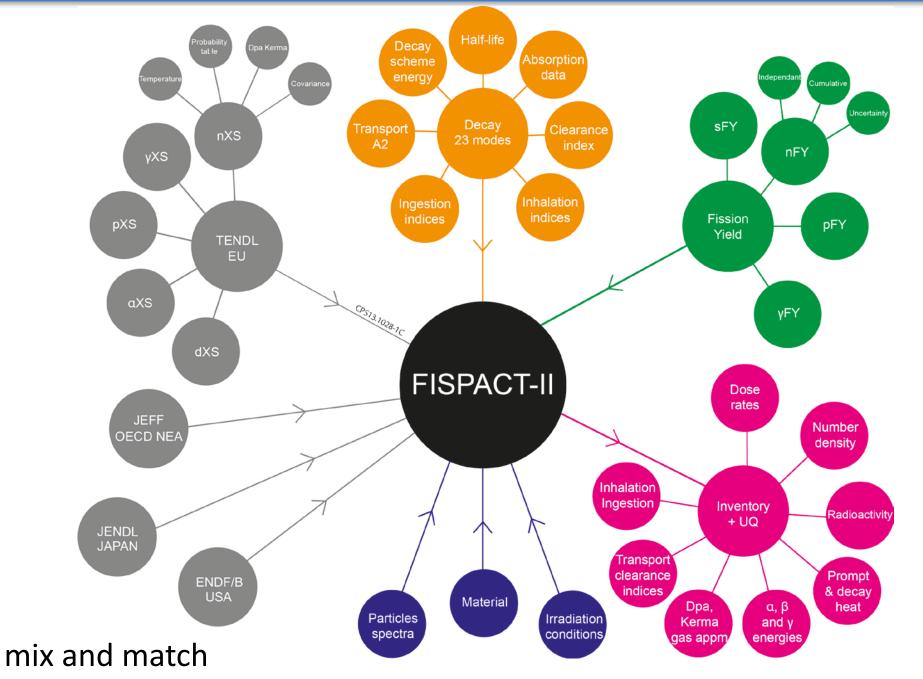
Aixai Metai Aixaine carthi Fransition Metai Osak Metai Seminetai Halogen Nobie Gas Canthanide Actinide	0 1016 To dd Helmenstine	Reside	Lanthanide	Noble Gas	Halogen	Nametal	Semimetal	Basic Metal	Transition Metal	Alkaline Earth	Alkali Metal
		Actinide	Lanthanide	Noble Gas	Halogen	Nonmetal	Semmeran	Desicinetar	Transition Metal	Ancanne Earth	Alkali Metal

3

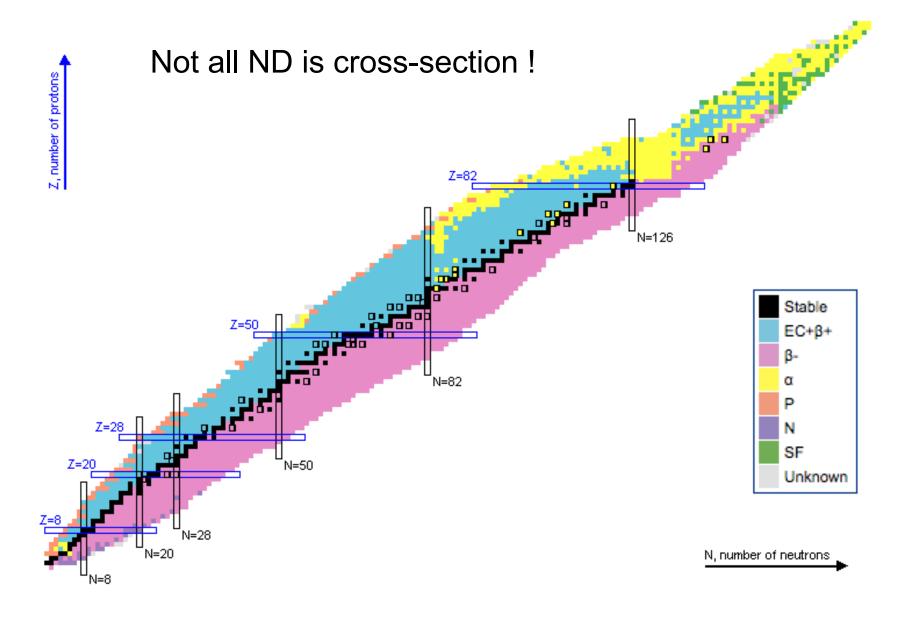

Nuclear landscape: Isotopic targets

60 Years

60 Years


Z (number of protons)

- FISPACT-II is a modern engineered simulation solver for activation-transmutation, depletion inventories and materials science at the heart of an enhanced multi-physics, multiscale platform that relies on the TALYS collaboration to provide parts of its nuclear data libraries.
- FISPACT-II was designed to be a functional replacement for the earlier code FISPACT-2007 (1987-2007 †) but now includes many enhanced, unique and potent capabilities.
- d, p, α, γ, n-Transport Activation Library: TENDL-2015 from the TENDL collaboration, but also ENDF/B, JENDL, JEFF, CENDL and GEFY
- All nuclear data processing is handled by NJOY (LANL), PREPRO (LLNL) and CALENDF (UKAEA)


60 Years FISPACT-II & TENDL, ENDF/B, JENDL, JEFF, CENDL

IAEA Atoms for Peace and Developme

3873 isotopes (23 decay modes; 7 single and 16 multi-particle ones)

FISPACT-II advanced simulations

FISPACT-II

Incident particles α, γ, d, p, n (5) ENDF's libraries: TENDL-2015 & GEFY-5.3 ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, CENDL-3.1 ✓ XS data (2809 targets) (~400 targets each) ✓ Decay data (3873 isotopes) ✓ nFY, SFY, otherFY ✓ Hazard, clearance indices, A2 Dpa, Kerma, Gas production, HE radionuclide yields ✓ PKA, primary recoils and emitted particles spectra ✓ Uncertainty quantification and propagation UQP ✓ Variance-covariance Temperature (from reactor to astrophysics, plasma) ✓ 0, 294, 600, 900 K,5, 30, 80 KeV Self-shielding with probability tables and/or with resonance parameters 1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV Sensitivity ✓ Monte Carlo Pathways analysis, routes of production ✓ multi steps		
 Karma, Gas production, HE radionuclide yields Mazard, clearance indices, A2 Dpa, Kerma, Gas production, HE radionuclide yields Mazard, clearance indices, A2 Dpa, Kerma, Gas production and propagation UQP Variance-covariance Variance-covariance Variance-covariance Variance-covariance Self-shielding with probability tables and/or with resonance parameters Energy range 1.0 10⁻⁵eV – 30, 200 MeV,1GeV Sensitivity Monte Carlo Monte Carlo Thin, thick targets yields 	Solver	Numerical - LSODES 2003
ENDF's libraries: TENDL-2015 & GEFY-5.3 ENDF/s-VII.1, JEFF-3.2, JENDL-4.0, CENDL-3.1 (~400 targets each) Dpa, Kerma, Gas production, HE radionuclide yields PKA, primary recoils and emitted particles spectra Uncertainty quantification and propagation UQP Temperature (from reactor to astrophysics, plasma) 1 KeV ~ 12 million Kelvin Self-shielding with probability tables and/or with resonance parameters Energy range 1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV Sensitivity Pathways analysis, routes of production Thin, thick targets yields	Incident particles	α, γ, d, p, n (5)
PKA, primary recoils and emitted particles spectra ✓ Uncertainty quantification and propagation UQP ✓ Variance-covariance Temperature (from reactor to astrophysics, plasma) ✓ 0, 294, 600, 900 K,5, 30, 80 KeV Self-shielding with probability tables and/or with resonance parameters ✓ Resolved and Unresolved Resonance Range Energy range 1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV Sensitivity ✓ Monte Carlo Pathways analysis, routes of production ✓ multi steps	ENDF's libraries: TENDL-2015 & GEFY-5.3 ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, CENDL-3.1 (~400 targets each)	 Decay data (3873 isotopes) nFY, sFY, otherFY
Uncertainty quantification and propagation UQP ✓ Variance-covariance Temperature (from reactor to astrophysics, plasma) ✓ 0, 294, 600, 900 K,5, 30, 80 KeV Self-shielding with probability tables and/or with resonance parameters ✓ Resolved and Unresolved Resonance Range Energy range 1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV Sensitivity ✓ Monte Carlo Pathways analysis, routes of production ✓ multi steps Thin, thick targets yields ✓	Dpa, Kerma, Gas production, HE radionuclide yields	\checkmark
Temperature (from reactor to astrophysics, plasma) 0, 294, 600, 900 K,5, 30, 80 KeV Self-shielding with probability tables and/or with resonance parameters Resolved and Unresolved Resonance Range 1.0 10⁻⁵eV – 30, 200 MeV,1GeV Monte Carlo Monte Carlo Thin, thick targets yields multi steps 	PKA, primary recoils and emitted particles spectra	~
1 KeV ~ 12 million Kelvin V 0, 234, 000, 300 K,3, 30, 80 KeV Self-shielding with probability tables and/or with resonance parameters V Resolved and Unresolved Resonance Range Energy range 1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV Sensitivity V Monte Carlo Pathways analysis, routes of production V multi steps Thin, thick targets yields V	Uncertainty quantification and propagation UQP	 Variance-covariance
resonance parameters Resonance Range Energy range 1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV Sensitivity ✓ Monte Carlo Pathways analysis, routes of production ✓ multi steps Thin, thick targets yields ✓	Temperature (from reactor to astrophysics, plasma) 1 KeV ~ 12 million Kelvin	✔ 0, 294, 600, 900 K,5, 30, 80 KeV
Sensitivity Monte Carlo Pathways analysis, routes of production Thin, thick targets yields	Self-shielding with probability tables and/or with resonance parameters	
Pathways analysis, routes of production	Energy range	1.0 10 ⁻⁵ eV – 30, 200 MeV,1GeV
Thin, thick targets yields	Sensitivity	✓ Monte Carlo
	Pathways analysis, routes of production	✓ multi steps
🖌 new or unique	Thin, thick targets yields	9
•	🖌 new or unio	que

Processing steps: three codes

cross-check

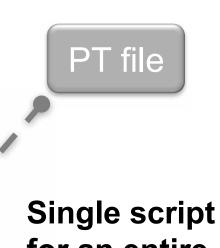
ENDF file

- NJOY12-099
 - reconr
 - broadr
 - unresr
 - thermr
 - heatr
 - gaspr
 - groupr
 - purr

• acer PKA file

ACE file

- PREPRO-2017
 - linear


ullet

cross-check

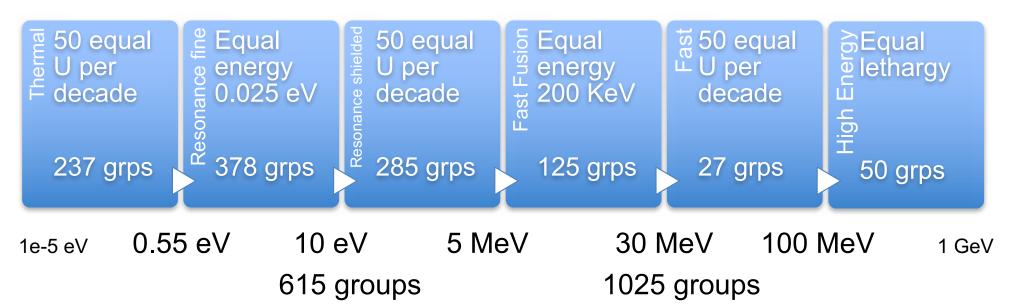
- recent
 - sigma1
 - sixpack
 - activate
 - merger
 - dictin
- groupie

Processed ENDF file

- CALENDF-2010
 - calendf
 - regroutp
 - lecritp

Single script for an entire library

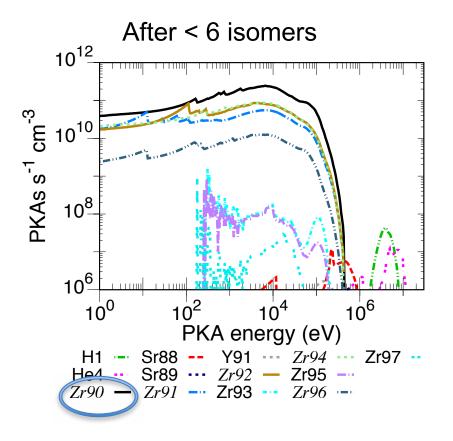
- **PREPRO-2017**
 - 0 Kelvin run
 - Single temperature pendf, 294 Kelvin to... 100 KeV
 - SIXPACK: unique mf3-mt5/mf6 high energy processing
 - ACTIVATE: unique mf9 processing
 - Merge NJOY-12 dpa, kerma, pendf responses
 - GROUPIE to: 1102 grps @ 1 GeV


1067 grps @ 200 MeV 1025 grps @ 30 MeV 615 grps @ 10 eV 162 gprs @ 200 MeV (for charge particles)

mf-2 processed, but also kept in for further usage

The resulting pendf/gendf "tape" fully comply to the ENDF-6 format frame and many utilitarian process (display, merge, concatenate, etc.) can be performed on such data forms ¹¹

- For all 2809 TENDL target nuclides
- 1102 energy groups for <u>all applications alike</u>


- 237 fine groups for proper 1/E < 0.55 eV
- 378 fine groups in the resonance range < 10 eV
- Resonance shielded data available in the RRR (>0.1 eV) up to the end of the URR for all nuclides IDs
- Fast fine enough structure for accurate threshold reaction rate

NJOY12 updates for Zr isotopes

- */ ident up69
- */18aug2016
- */ groupr
- */ the dimension limit of 3 in getmf6 for iyss, izss and jjss means
- */ we're assuming no more than a ground state plus two isomers for
- */ a given ZA. Recent files may exceed this limit

Typically these are divided into differential & integral:

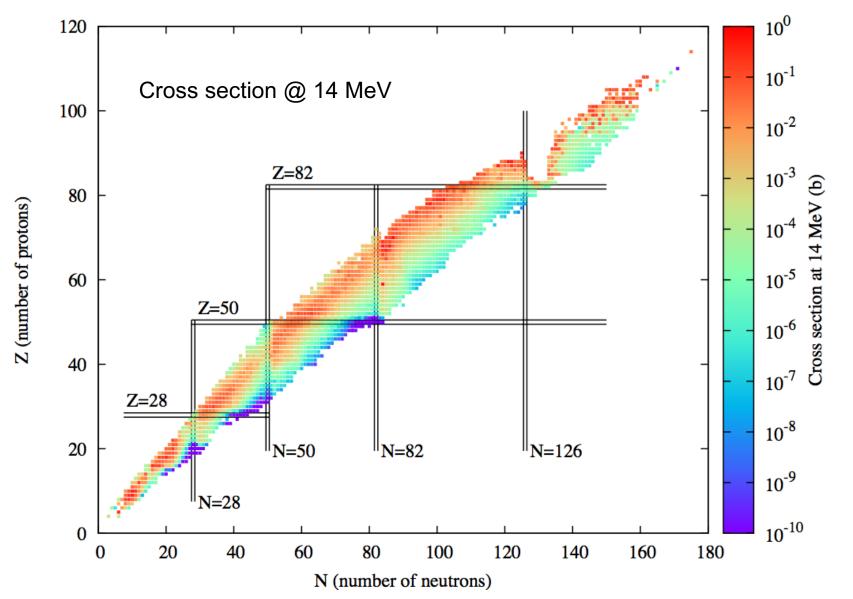
- Differential
 - C/E with the latest EXFOR database
 - C/C with other ENDF's files
 - SACS: Statistical Analysis of Cross Section
- Integral
 - Activation-transmutation; activity, gamma, decay heat
 - FISPACT-II validation suite (~500 reaction rates, thousands of integral E, time dependent, fast system)
 - MACS and RI: Maxwellian-averaged cross sections and astrophysical reaction rates, resonance integrals
 - Decay heat and inventories predictions for fission events

FISPACT-II resources

- FISPACT-II and libraries are subject of various validation reports:
 - CCFE-R(15) 25 Fusion decay heat
 - CCFE-R(15) 27 Integral fusion
 - CCFE-R(15) 28 Fission decay heat

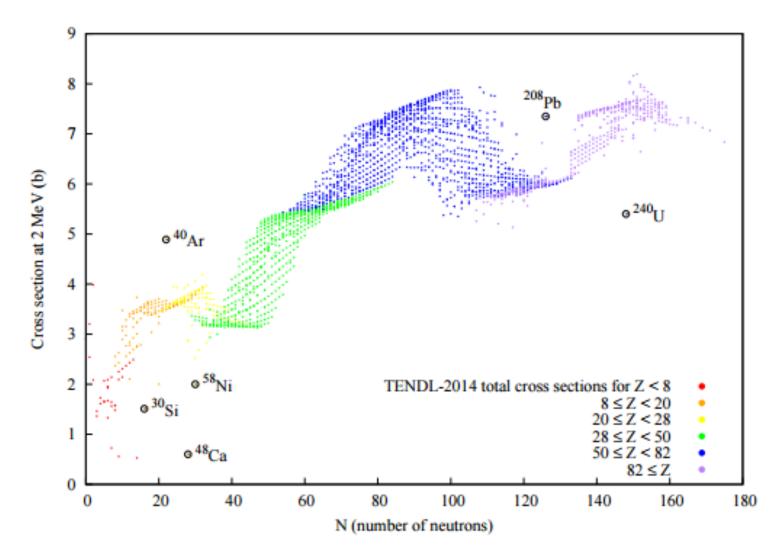
SCCFE	SCCFE	* CCFE
CCPE-R(15)28 June 2015	CCFE-R(15)27 March 2015	CUPE.R(11)14 January 2015
Michael Fleming Jean-Christophe Sublet	Michael Fleming Jean-Christophe Sublet Jiri Kopecky	Jean-Christophe Sublet Mark R. Gibert
Validation of FISPACT-II Decay Heat and Inventory Predictions for Fission Events	Integro-Differential Verification and Validation, FISPACT-II & TENDL-2014 nuclear data libraries	Decay heat validation, FISPACT-II & TENDL-2014, JEFF-3.2, ENDF/B-VII.1 and JENDL-4.0 nuclear data libraries
458 pages	539 pages	315 pages

FISPACT-II resources

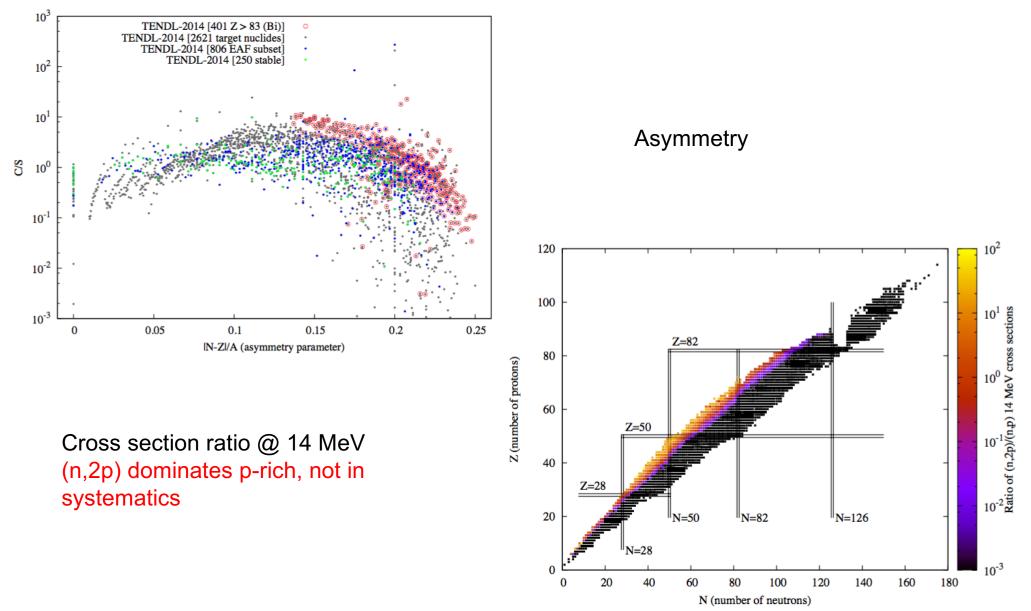

- FISPACT-II and libraries are subject of various validation reports:
 - UKAEA-R(15) 29 Astro s-process
 - UKAEA-R(15) 30 RI/therm/systematics
 - UKAEA-R(15) 35 Summary report

UK Atomic Energy Authority	UK Atomic Energy Authority	الله UK Atomie Energy Authority
UKAEA-R(15)29 August 2015	UKAEA-R(15)30 October 2015	UKARA BUUSA Neuenber 2018
Jean-Christophe Sublet Michael Fleming	Michael Fleming Jean-Christophe Sublet Jiri Kopecky Dimitri Rochman Arjan Koning	Jean-Christophe Sublet Michael Fleming Jiel Koperky Mark Gibert Dimitti Hochman Arjan Koning
Maxwellian-Averaged Neutron-Induced Cross Sections for kT=1 keV to 100 keV, KADoNIS, TENDL-2014, ENDF/B-VII.1 and JENDL-4.0u nuclear data libraries	Probing experimental & systematic trends of the neutron-induced TENDL-2014 nuclear data library	Summary of TENDL-2014 Verification & Validation outcomes and recommendations for future libraries
417 pages	99 pages	38 pages

V&V: Global checks on nuclear data


 Global checks and new visualisation methods developed to provide verification over the massive data-set

60 Years


 Trends (here in total) help find programming glitches after various effects (shell, high-energy resolved resonances, etc.) have been taken into account

 Global checks and new visualisation methods developed to provide verification over the massive data-set

60 Years

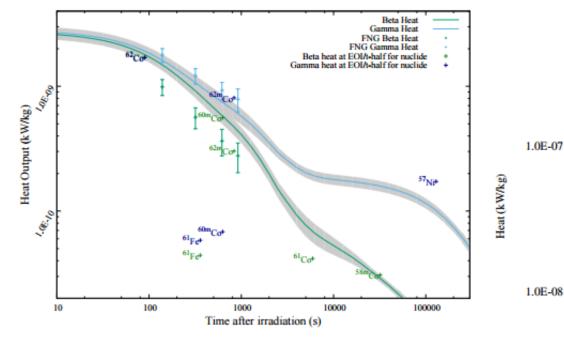
Validation – decay heat

TENDL-2014

JEFF-3.2

10000

ENDF-B/VII.1 JENDL-4.0


FNS 2000 Inconel-600 value/t-half for nuclide

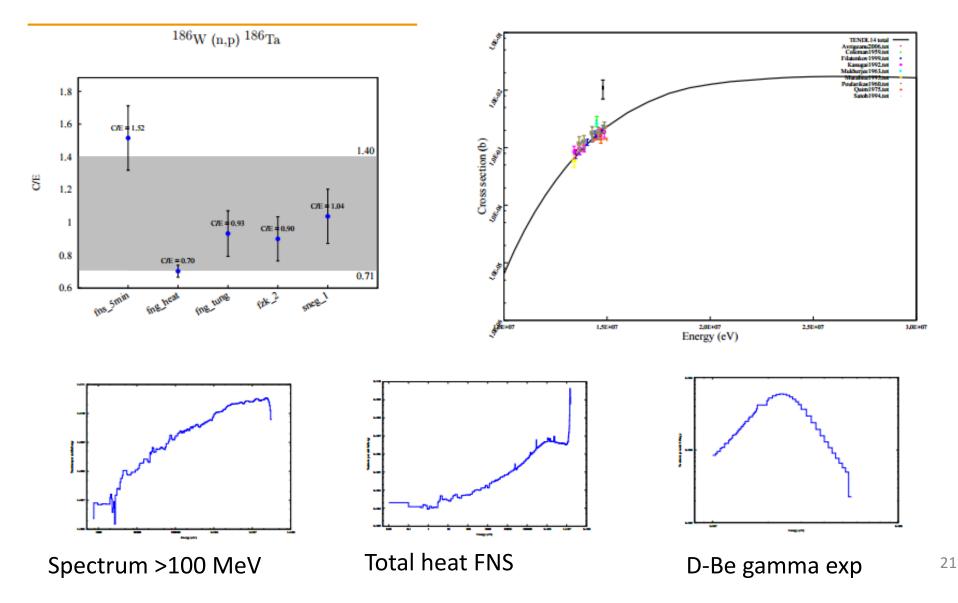
 Integral "effective "cross sections are inferred from postirradiation measurements such as gamma-decays or calorimetric data

LILL

²Cg

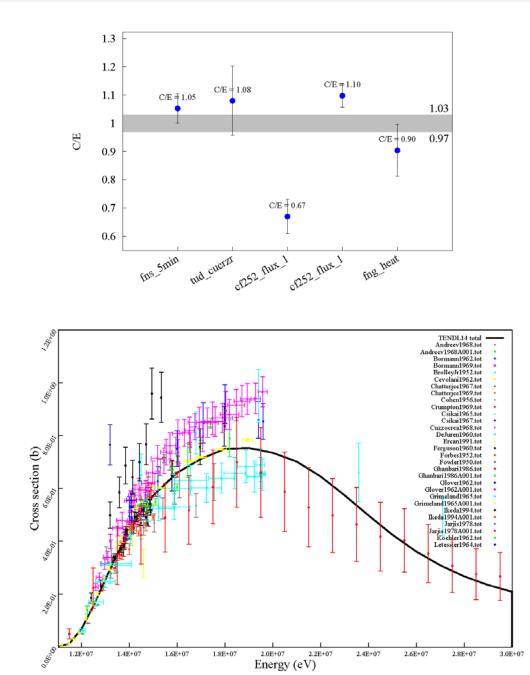
100

Spectroscopic heat from ENEA FNG campaign


Total heat calorimetric measurements from JAEA FNS campaign²⁰

1000

Time after irradiation (s)



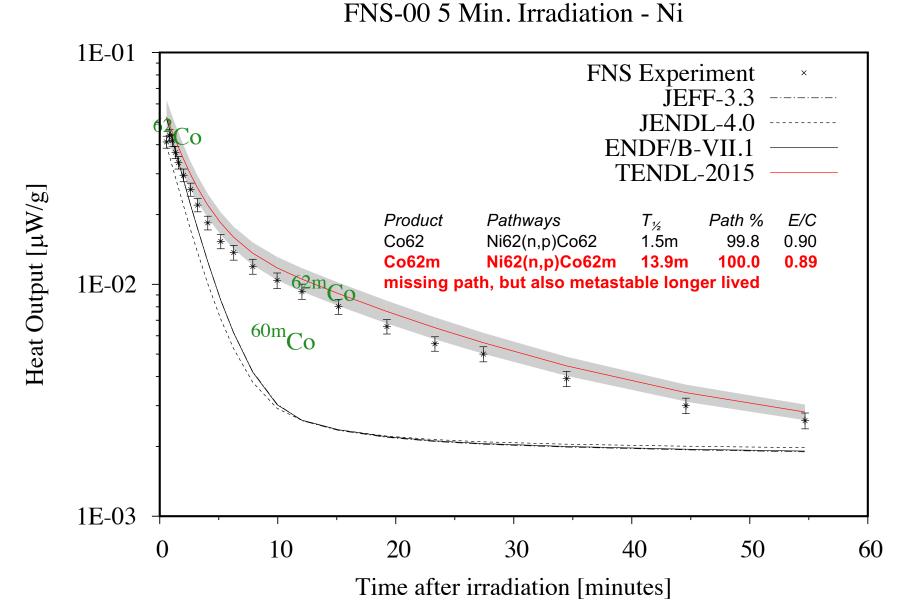
• The best approach is to use multiple experiments from different systems, covering int. and diff. experiments

Not all integrals.. Not all differentials..

are as reliable, so the importance of the covariances

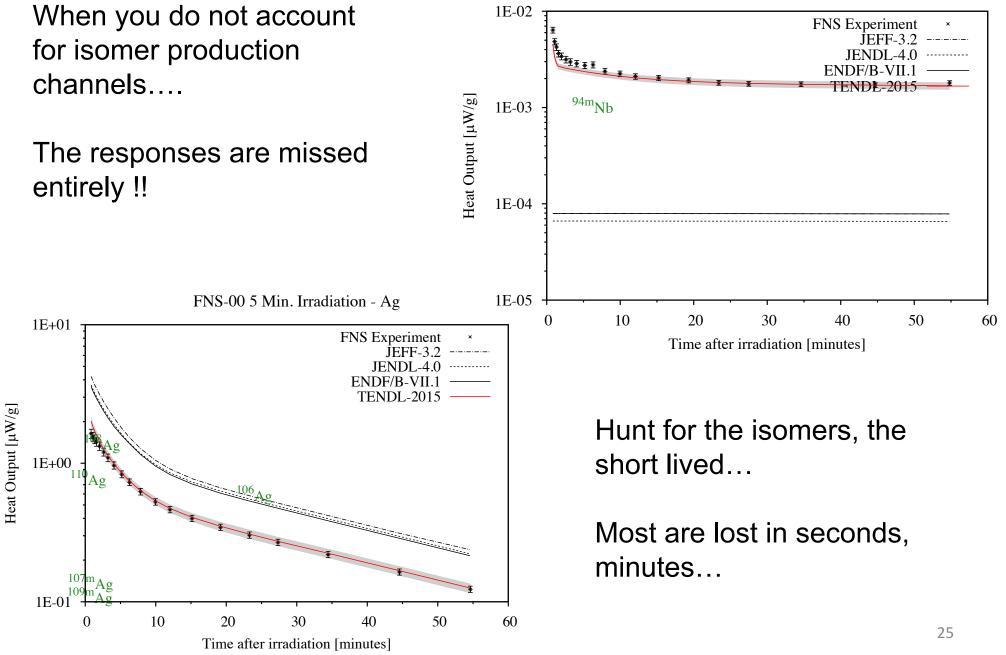
TENDL2014

- TENDL has outperformed all libraries, including EAF, which is *tuned* to these experiments!
- Legacy libraries miss 1/3 of the channels


$$\operatorname{Log}\left(\overline{C/E}\right) = \frac{1}{n}\sum_{i=1}^{n}\operatorname{Log}\left(C_{i}/E_{i}\right)$$

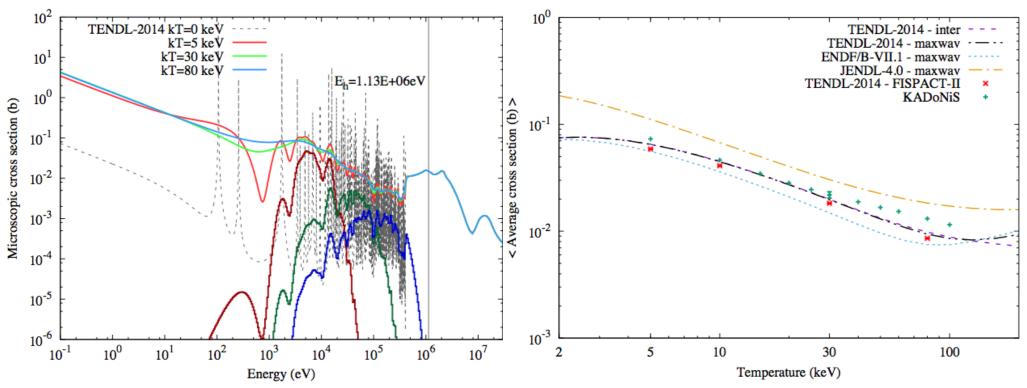
- EAF mean = 0.850 while TENDL = 0.993 – asymmetry implies underestimations

C/E values

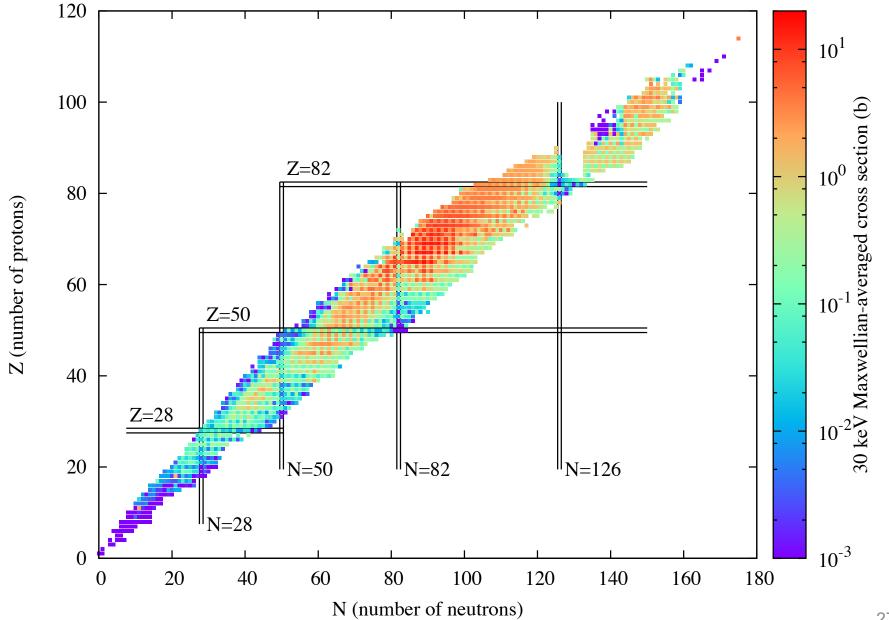

Random walk uncertainty

Decay power: FNS JAERI

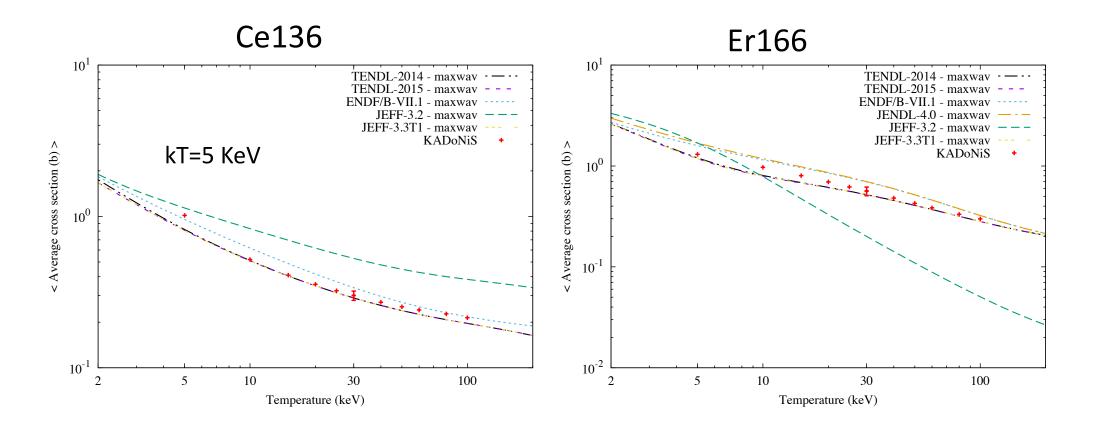
FNS-00 5 Min. Irradiation - Nb



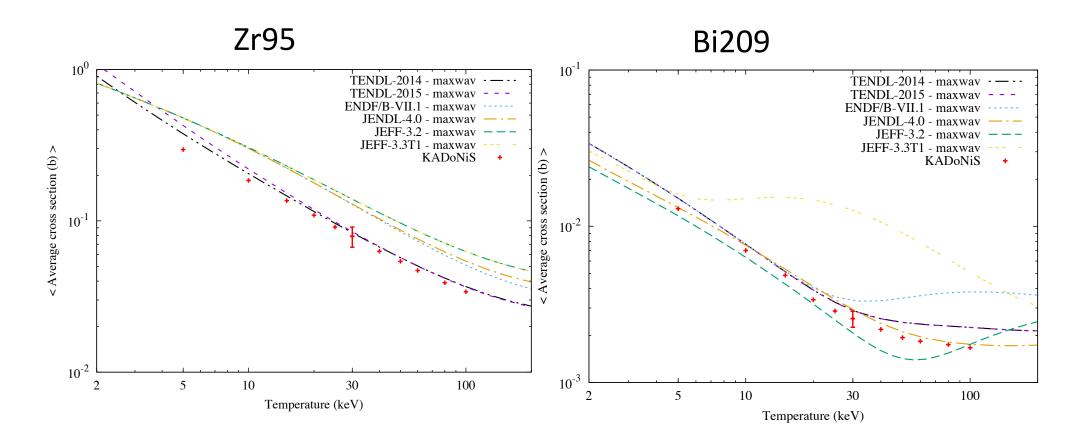
 AGB stars forge elements above Fe through neutron capture with kT=1-100keV, precisely in resonance ranges!

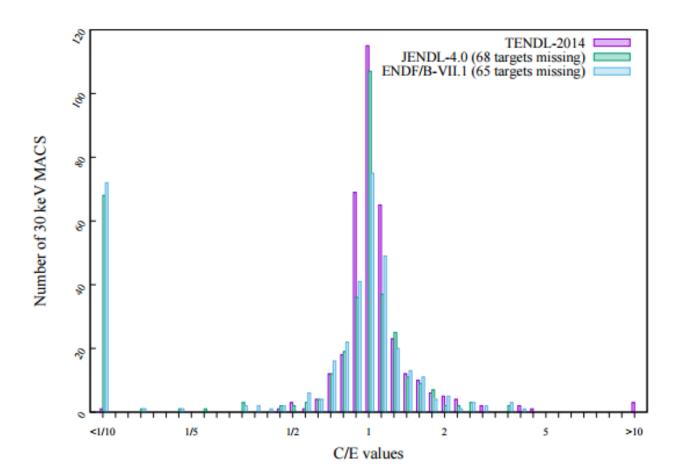

60 Years

- Many experiments give data of use in benchmarking subject of report UKAEA-R(15)29
- Left: microscopic $\sigma(E)$ and RR(E), Right: RR(kT) against exp. (Sn122)

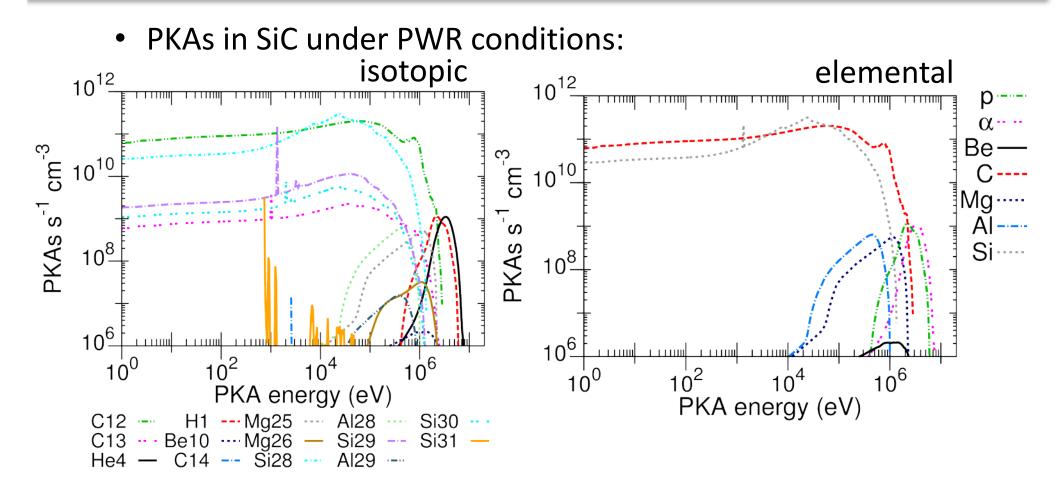

kT= 30 keV Maxwellian

New MACS for TENDL15

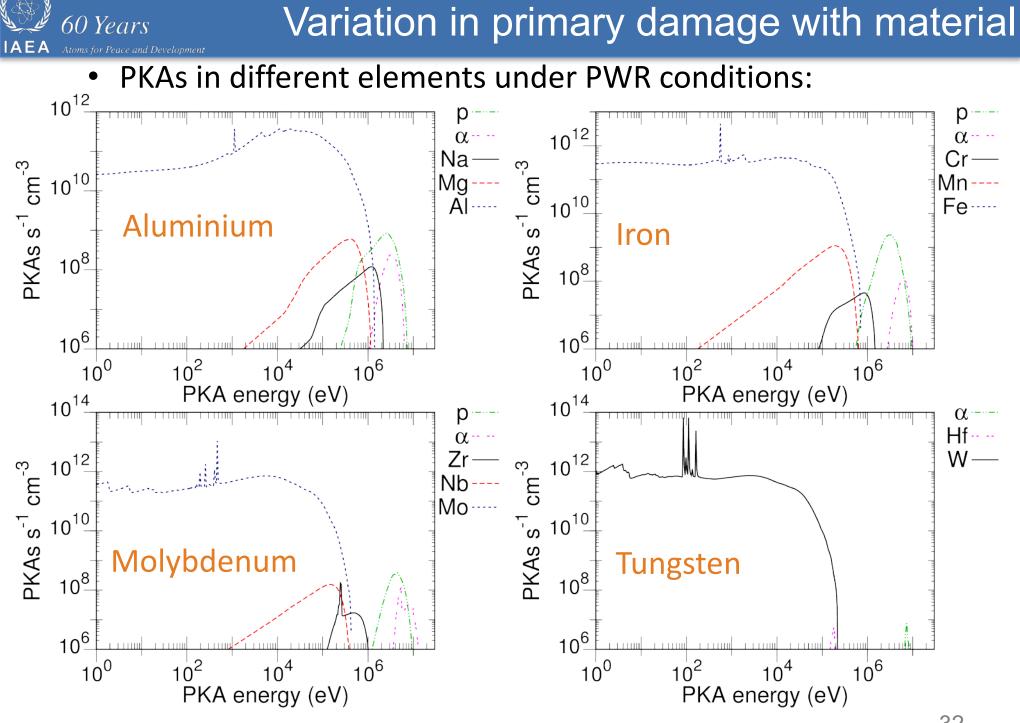

• Some nice improvements, adoption of data, for example:


New MACS for TENDL15

- Some outstanding issues, questions to be addressed:
 - 1. How much faith to place in these data?
 - 2. What can be drawn, and how, from TENDL?



- About 20% of the channels are not in ENDF/B or JENDL or JEFF although TENDL of course includes all
- TENDL based on intelligent 'borrowing' of best resonance parameter descriptions + HFR so as good as legacy libraries

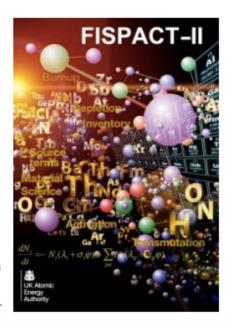


New Verification: n-prod matrices PKA spectra

60 Years

- Primary knock-on atom (PKA) evaluations using TENDL and SPECTRA-PKA*
- Necessary as input into materials modelling of radiation damage creation and evolution

http://fispact.ukaea.uk/



FISPACT-II is an enhanced multiphysics, inventory and source-term code system providing a wide variety of advanced, predictive, spectral and temporal simulation methods employing the most up-to-date and complete nuclear data forms for both neutron and charged-particle interactions.

60 Years

FISPACT-II has been developed and is maintained by the United Kingdom Atomic Energy Authority at Culham. As a comprehensive, modern object-oriented Fortran code, FISPACT-II fully processes all ENDF-6 nuclear data including the complete TENDL data with full covariances files. This extends the physics up to GeV energy with all channels and incident/emitted particles. Code features include self-shielding factors, broad temperature dependence, thin/thick target yields, robust pathway analysis, Monte-Carlo sensitivity and uncertainty quantification and propagation using full covariance data.

The latest generation of processing codes PREPRO, NJOY and CALENDF are used to provide the user with the most sophisticated incident-particle nuclear data from the TENDL-2015, ENDF/B.VII.1, JENDL-4.0, CENDL-3.1 and JEFF-3.2 international libraries, which are complemented with the latest decay and fission yield data, including the most recent GEFY-5.2 libraries. The maturity of modern, technological nuclear data including TENDL and GEF provides truly comprehensive data for all simulation requirements. The result is a multiphysics platform that can accommodate the needs of all nuclear applications including: activation, transmutation, depletion, burn-up, decays, source definition, full inventories, dpa, kerma, primary damage (PKA) spectra, gas/radionuclide production and more.

FISPACT-II web site

UK Atomic Energy Authority

FISPACT-II

Overview	Overview Methods » Documentation » Validation » Nuclear data » Links » Contact English »										
Documentation											
The primary refe	The primary references for the FISPACT-II code are the user manual and the 2017 Nuclear Data Sheets paper:										
The FISPACT-II User Manual UKAEA-R(11)11 Issue 8 December 2016											
FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling Nuclear Data Sheets 139 (2017) 77-137											

Other publications are divided into the following sections with their own sub-pages:

Reports

These include the official verification and validation reports for FISPACT-II and the nuclear data libraries it employs. Special attention is given to the general-purpose TENDL libraries. The materials handbooks for a variety of systems are included with their supplemental reports including PKA spectra and other materials simulation input data.

Articles

A wide range of articles related to and including FISPACT-II are listed, which range from *Nuclear Data Sheets* to *Fusion Engineering and Design* and *Nuclear Science and Engineering*. These include the various methods papers, studies produced using FISPACT-II and other research into nuclear observables, materials and nuclear data.

FISPACT-II

Overview	Overview Methods » Documentation » Validation » Nuclear data » Links » Contact English »										
Reports											
Verification and Validation Reports											
Validation of FISPACT-II decay heat and inventory predictions for fission events CCFE-R(15)28											
Probing experin	nental and systema	tic trends of the neutron-ind	uced TENDL-2014 r	nuclear data library UKA	EA-R(15)30						
Maxwellian-averaged neutron-induced cross sections for kT=1 keV to 100 keV, KADoNiS, TENDL-2014, ENDF/B-VII.1 and JENDL-4.0u nuclear data libraries UKAEA-R(15)29											
Integro-differential verification and validation, FISPACT-II & TENDL-2014 nuclear data libraries CCFE-R(15)27											
Decay heat validation, FISPACT-II & TENDL-2014, JEFF-3.2, ENDF/B-VII.1 and JENDL-4.0 nuclear data libraries CCFE-R(15)25											
Decay heat valid	dation, FISPACT-II 8	Decay heat validation, FISPACT-II & TENDL-2013,-2012 and EAF-2010 nuclear data libraries CCFE-R(14)21									

FISPACT-II material handbooks

Handbook of activation, transmutation and radiation damage properties of the elements and of ITER materials simulated using FISPACT-II & TENDL-2015; ITER FW armour focus CCFE-R(16)37

Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2015; Magnetic Fusion Plants CCFE-R(16)36

Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Magnetic Fusion Plants CCFE-R(15)26

Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (PWR focus) UKAEA-R(15)31

Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (HFR focus) UKAEA-R(15)32

Handbook of activation, transmutation and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2014; Nuclear Fission Plants (FBR focus) UKAEA-R(15)33

Supplements

Decay datacomparisons for decay heat and inventory simulations of fission events CCFE-R(15)28_S1

Fission yield comparisons for decay heat and inventory simulations of fission events CCFE-R(15)28_S2

PKA distributions of the elements simulated using TENDL-2015; Magnetic Fusion Plants CCFE-R(16)36-supplement

PKA distributions of the elements simulated using TENDL-2014; PWR Nuclear Fission plants UKAEA-R(15)31-supplement

PKA distributions of the elements simulated using TENDL-2014; HFR Nuclear Fission plants UKAEA-R(15)32-supplement

PKA distributions of the elements simulated using TENDL-2014; FBR Nuclear Fission plants UKAEA-R(15)33-supplement

FISPACT-II web site

ICTP Trieste Nuclear Data Workshop Oct 2-13 2017

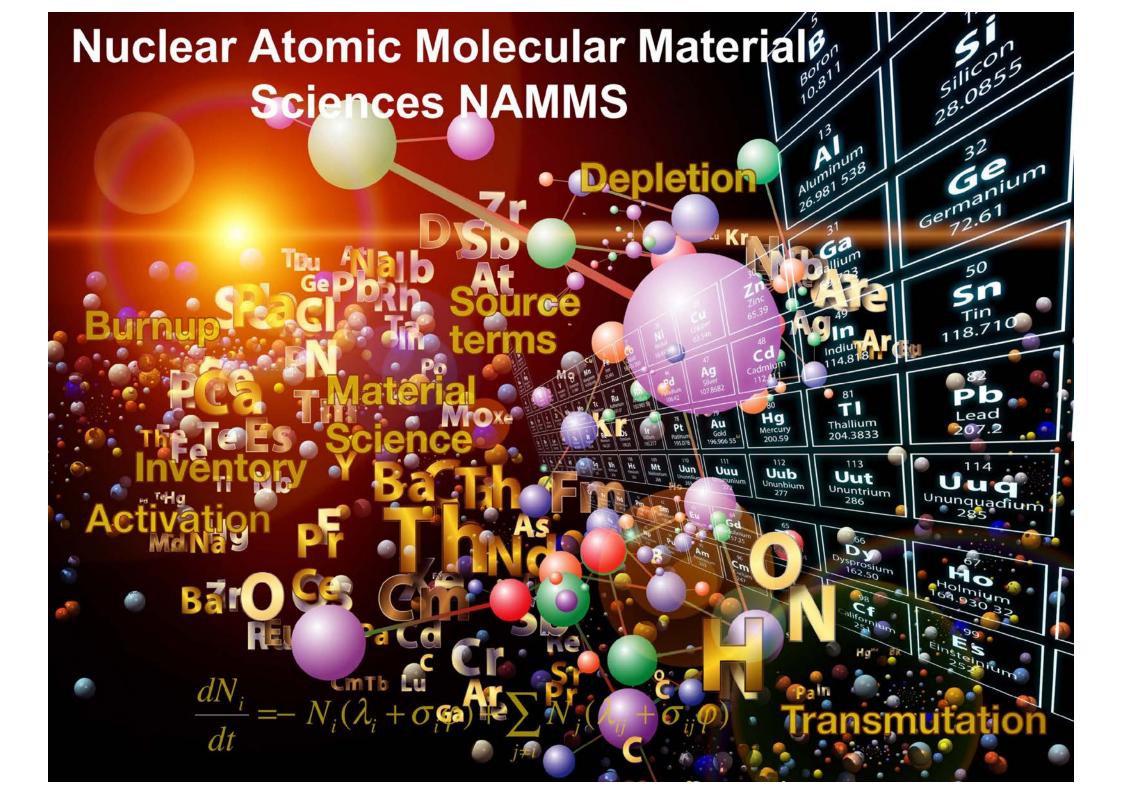
The Joint ICTP-IAEA Workshop on the Evaluation of Nuclear Reaction Data for Applications will be held in Trieste, October 2-13 2017. There is no registration fee. The deadline for applications ...

Read More

5th July 2017 / Michael Fleming / Nuclear Data, Training, Workshops

Workshop on TALYS/TENDL developments, 13-15 November 2017, Prague

FISPACT-II 3-20 available through OECD-NEA Data Bank


FISPACT-II 3-20-00 code release

FISPACT-II 3-00-00 available through ORNL RSICC

- All FISPACT-II V&V suites will be deployed again on the forthcoming TENDL-2017, ENDF/B-VIII.0 and JEFF-3.3
- All integral relevant/pertinent information will also be embedded, systematically mirrored (when applicable) in the next generation of the T's codes
- Angular data, recoils, emitted particle spectra pose now the next challenges
- Multi-faceted, multi-scale validation processes are also needed

