

Nuclear Physics Institute of the CAS public research institution

Proton and deuteron activation measurements on the NPI

E. Šimečková, P. Bém, J. Mrázek, M. Štefánik, J. Novák, R. Běhal, V. Glagolev

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Former research

E

Eurato

Eurator

Ioria Hulubei' Nation

Nov. 2017

M. Avrige

¹Horia Huli

³Eura

¹Horia

Deuteron-induced reactions on Ni isotopes up to 60 MeV M. Avrigeanu,^{1,*} E. Šimečková,^{2,†} U. Fischer,³ J. Mrázek,² J. Novak,² M. Štefánik,² C. Costache,¹ and V. Avrigeanu¹ ¹Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, R-077125 Bucharest-Magurele, Romania ²Nuclear Physics Institute CAS, CZ-25068 Řež, Czech Republic ³Euratom/FZK Fusion Association, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz, 1, TALYS/TENDL Workshop D-76344 Eggenstein-Leopoldshafen, Germany (Received 11 June 2016; published 12 July 2016)

d + W, Zn, Zr

Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS

Eva Šimečková^{1,*}, Pavel Bém¹, Jaromír Mrázek¹, Milan Štefánik¹, Radomír Běhal^{1,}, and Vadim Gladolev¹

valaar Dhurias Institute CAS 250 68 Ďaž Czash Dopublia

The activation of W and Zr by deuterons at energies up to 20 MeV

Eva Šimečková^{1,*}, Milan Štefánik¹, Pavel Bém¹, Jaromír Mrázek¹ and Jan Novák¹

¹Nuclear Physics Institute CAS, 250 68 Řež, Czech Republic

Abstract. The proton and deuteron induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers. In order to investigate the important nuclides, we have carried up the irradiation experiments with the variable-energy cyclotron U-120M of the NPI CAS Řež. The production cross sections of the nuclides ^{179,181,182m,182,183,184m,184,186}Re and ¹⁸⁷W from reaction on natural W were investigated by deuteron beams of 20 MeV energy. A part of preliminary results of deuteron activation of natural Zr is also shown. The stacked-foil technique was utilized. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed.

TALYS/TENDL Workshop, Praha, Nov. 2017 interest for the assessment of induced s as well as isotope production for sections on zinc were investigated by gy from the cyclotron U-120M of NPI iron is presented. The comparison of lated data libraries is discussed. The nterval 20-35 MeV at SPIRAL2/NFS transport system to measure isotopes

Natural Zr

Isotope	Natural abundance (%)
⁹⁰ Zr	51.45
⁹¹ Zr	11.22
⁹² Zr	17.15
⁹⁴ Zr	17.38
⁹⁶ Zr	2.80

18 production excitation functions, 6 for the first time

NPI energy variable cyclotron U120M

Czech Republic contribution to SPIRAL2

GANI

NPI energy variable cyclotron U120M

Center of Accelerators and Nuclear Analytical Methods (CANAM)

012·CZ

The energy is determined with the calculation of trajectory and position of cyclotron extraction foil. This correctness of energy determination was tested using the scattering of extracted beam on CH2 radiator.

Disadvantage

- E_d < 20MeV
- few orbits
- not transfer system

NFS – SPIRAL2

- Linear accelerator
- d up to 40 MeV
- Transfer system

Charged particle chamber

• Faraday cup

Current measurement

Stacked-foil technique

stacks of measured and monitoring foils placed by turns

monitoring foils served for additional monitoring of beam current and for appropriate reduction of proton energy, as well.

During an irradiation, the beam current was recorded with the uncertainty of 5 % in a PC keeping time synchronization with the γ -ray spectrometry device. Energy attenuation, target density - **SRIM**

The cross-sections for proton provoked reactions on Fe and Cu were measured by the stacked-foil technique and its absolute values were calculated from the measured induced activities, charges and material characteristics.

Natural Cr

Isotope	Natural abundance (%)
50Cr	4.345
⁵² Cr	83.789
⁵³ Cr	9.501
⁵⁴ Cr	2.365

T_{1/2} = 15.9735 d

d + ^{nat}Cr

T_{1/2} = 312.3 d

d + ^{nat}Cr

Center of Accelerators and Nuclear Analytical Methods (CANAM) NPI CAS DIA2-CZ Czech Republic contribution to SPIRAL2

T_{1/2} = 21.1 min

E _γ (keV)	Ι _γ (%)
1434.07	98.3
377.75	1.7

T_{1/2} = 5.591 d

E _γ (keV)	Ι _γ (%)
1434.07	100
935.54	94.5
744.23	90.0

$$\begin{array}{c} {}^{51}\text{Mn} \\ p + \underset{{}^{51}\text{V}}{nat}Fe \\ {}^{51}\text{V} \\ & {}^{\epsilon^{+}\beta^{+}} \end{array} \\ \end{array} \\ \overline{ }^{\epsilon^{+}\beta^{+}} \\ \end{array} \\ \begin{array}{c} {}^{51}\text{Mn} \\ \overline{ }^{\epsilon^{+}\beta^{+}} \end{array} \\ \overline{ }^{51}\text{Mn} \\ \overline{ }^{\epsilon^{+}\beta^{+}} \\ \overline{ }^{\epsilon^{+}\beta$$

T_{1/2} = 46.2 min

T_{1/2} = 27.7025 d

E _γ (keV)	Ι _γ (%)
749.1	0.26
1148.0	0.078
320.1	10

Ε _γ (keV)	l _γ (%)
320.1	10

Natural Ni

Isotope	Natural abundance (%)
⁴⁶ Ti	8.25
⁴⁷ Ti	7.44
⁴⁸ Ti	73.72
⁴⁹ Ti	5.41
⁵⁰ Ti	5.18

T_{1/2} = 43.67 h

d + natTi

T_{1/2} = 15.9735 d

d + ^{nat}Ti

 $T_{1/2} = 3.3492 \text{ d}$

T_{1/2} = 32.6 min

d + ^{nat}Ti

T_{1/2} = 83.79 d

T_{1/2} = 3.891 h

Center of Accelerators and Nuclear Analytical Methods (CANAM)

T_{1/2} = 58.6 h

d + ^{nat}Ti

 $T_{1/2} = 3.927 h$

Natural Fe

Isotope	Natural abundance (%)
⁵⁴ Fe	5.845
⁵⁶ Fe	91.754
⁵⁷ Fe	2.229
⁵⁸ Fe	0.282

	1. run	2. run
E _{max}	20.067 MeV	30.513 MeV
Q	473.3 μQ	431.803 μQ
ΔΤ	26.98 min	20.00 min
_{mean}	0.292 μA	0.360 μA

T_{1/2} = 17.53 h

^{nat}Fe(p,x)⁵⁵Co,⁵⁷Co

T_{1/2} = 271.79 d

E _γ (keV)	Ι _γ (%)	E _γ (keV)	Ι _γ (%)
931.3	75	122.06	85.6098
477.2	20.2	136.5	10.68

^{nat}Fe(p,x)⁵⁴Mn,⁵²Fe

T_{1/2} = 313.3 d

T_{1/2} = 8.275 h

E _γ (keV)	Ι _γ (%)	E _v (keV)	Ι _γ (%)
834.85	99.976	168.69	99.2

^{nat}Fe(p,x)⁵⁶Co,⁵⁶Mn

T_{1/2} = 77.27 d

T_{1/2} = 2.5785 h

E _γ (keV)	Ι _γ (%)
846.77	100
1771.35	15.69
1037.84	13.99

E _γ (keV)	Ι _γ (%)
846.77	98.9
1810.77	27.2

^{nat}Fe(p,x)^{52m}Mn,⁵²Mn

 $T_{1/2} = 21.1 \text{ min}$

 $T_{1/2} = 5.591 d$

E _γ (keV)	Ι _γ (%)	E _γ (keV)	Ι _γ (%)
1434.07	98.3	1434.07	100
377.75	1.7	935.54	94.5

Isotope	T _{1/2}	E _γ (keV)	Ι _γ (%)
^{58m} Co	9.04 h	24.9	0.0389
⁵⁸ Co	70.86 d	810.8	99

^{nat}Fe(p,x)⁵³Fe

T_{1/2} = 8.51 min

E _γ (keV)	Ι _γ (%)
377.88	42

First experiment

PROPOSAL FOR AN EXPERIMENT

Spokesperson: Eva Sime Address: NPI CAS, 250 6	eckova 8 Rez, Czech Republic	
Phone:	Fax:	Email: simeckova@ujf.cas.cz
Backup Spokesperson: J Address: NPI CAS, 250 6	aromir Mrazek 8 Rez, Czech Republic	
Phone:	Fax:	Email: mrazek(@ulf.cas.cz
Phone: GANIL Scientific Coordination	Fax: ator: X.Ledoux	Email: mrazek@ujr.cas.cz

NFS irradiation chamber test

p + Cu, Fe

- 1. run 24.69 MeV
- 2. run 24.40 MeV
- 3. run 24.55 MeV
- 4. run 27.02 MeV
- 5. run 26.97 MeV

T_{1/2} = 2.58 min

T_{1/2} = 8.51 min

E _γ (keV)	Ι _γ (%)
377.88	42

T_{1/2} = 1.48 min

T_{1/2} = 21.1 min

E _γ (keV)	Ι _γ (%)
1129.9	98

E _γ (keV)	Ι _γ (%)
1434.068	98.3
377.748	1.7

T_{1/2} = 1.75 min

E _γ (keV)	Ι _γ (%)
929.5	100
869.9	93
621.7	51

SPIRAL2/NFS

SPIRAL2/NFS

Future

Study of excitation functions (isomer ratio) for p + Fe reactions at NFS Spiral 2 facility.

Continuation of d provoked activation cross section measurements on Cr and other Li loop impurities at NPI up to 20 MeV and at NFS Spiral2 up to 40 MeV (short lived isotopes).

Center of Accelerators and Nuclear Analytical Methods (CANAM)

Thank you for your attention.

www.canam.ujf.cas.cz

www.spiral2.cz