

LA150H library for the reaction ⁷Li(p,n) and new experimental data on neutron production

J. Novák, M. Ansorge, P. Bém, M. Majerle, J. Mrázek, E. Šimečková, M. Štefánik

Nuclear Physics Institute of The Academy of Sciences of the Czech Republic, 250 68 Řež 130, Czech Republic

NPI neutron source target stations

Why do we need QM source?

- Neutron cross-sections at energies higher than few MeVs are becoming increasingly important in the future energy production:
 - fusion
 - Accelerator Driven Systems.
- The experimentally measured CS data for neutrons with energies above some 20 MeV are rare.
- Irradiation with the known neutron spectrum and the subsequent activity measurement is commonly used to determine the reaction CS.
- Monoenergetic neutron beams from the d+t reaction are commonly used below some 20 MeV neutron energy, while above this energy only quasi-monoenergetic (QM) beams are available.

p+thin ⁷Li QM neutron generator

- The p+Li reaction is the most used QM neutron generator.
- ⁷Li(p,n) reaction on thin lithium target
- carbon beam stopper
- 20–37 MeV proton beam is used
- The neutron flux up to 3.10⁸ n/cm²/s for the 37 MeV/5 μA proton beam and for the target-to-sample distance of 50 mm.

⁷Li(p,xn) characteristics

- E_p = 1.9 ~ 2.4 MeV
 - Only ⁷Li(p,n)⁷Be_{g.s.}. Neutrons are monoenergetic, the reaction cross section is large. Source of neutrons n₀.
- E_p > 2.4 MeV
 - The ⁷Li(p,n)⁷Be, where ⁷Be is in the first excited state at 0.43 MeV, contributes to the neutron spectrum. Below 5 MeV the zero-degree yield < 10 % of the ground state yield. Above 7 MeV, it is > 25 %. Source of neutrons n₁.
- E_p > 3.68 MeV
 - ⁷Li(p,n³He)⁴He 3-body breakup. The zerodegree neutron spectra are very broad.
- E_p > 7.06 MeV
 - The ⁷Li(p,n)⁷Be, where ⁷Be is in the second excited state. The contribution is not significant. Source of neutrons n₂.

The n_0 and n_1 neutron yields are strongly forward peaked.

The zero-degree differential CS of ${}^{7}Li(p,n_{0}){}^{7}Be$ and ${}^{7}Li(p,n_{1}){}^{7}Be$ increases monotonically with increasing E_{p} , whereas the integral CS decreases monotonically above 5 MeV.

LA150H library extended by Mashnik et al.

Mashnik et al. [2000]

extends the ENDF-formatted cross section data library for protons on ⁷Li, incident proton energies up to 150 MeV.

Experimental background

⁷Li(p,xn)

- Threshold 8 MeV: Meadows and Smith, using the Argonne Fast-Neutron Generator
- 10 20 MeV: Anderson *et al.*, at Lawrence Radiation Laboratory
- 4.3 26 MeV: Poppe *et al.,* Van de Graaff, cyclotron at Livermore, summarized all measurements before 1976
- 15, 20, and 30 MeV: McNaughton *et al., at* the Croker Nuclear Laboratory
- Above 20 MeV: number of other groups
- 18 38 MeV: Uwamino et al. not included !

LA150H library extended by Mashnik et al.

The center-of-mass measured angular distributions of both the n₀ and n₁ neutrons were fitted using Legendre polynomials,

$$\frac{d\sigma_{c.m.}}{d\Omega} = \sum_{n=0}^{N} A_n P_n(\cos\theta)$$

The remaining part of the neutron flux is estimated by preequilibrium and Hauser-Feshbach calculation using the GNASH code.

- The input optical potentials were modified.
- The utility code for GNASH modification was used for exclusion of n₀ and n₁ neutron emission contribution. The inclusion of the n₀ and n₁ neutron emission contribution is based on measurements.

TINE

Development of nuclear data library by Prokofiev et al.

- The spectral fluence of the n spectrum from the ⁷Li(p,n) reaction at 0 deg for E_p = 50-200 MeV was assessed.
- The simulation using LA150H library disagrees with the experimental data.
- The model calculations based on the preequilibrium and equilibrium decay theories may be inadequate for such a light nucleus as ⁷Li.
- Prokofiev developed the semi-empirical systematics based on a phase-space distribution corresponding to the breakup process ⁷Li(p,n³He)α, completed with the correction on the experimental points.
- The Prokofiev systematics predictions are in good overall agreement with experimental data.
- The missing part of the experimental spectrum was reconstructed.

Development of nuclear data library by Prokofiev et al.

- The fraction of high-energy peak has been calculated on the basis of
 - Prokofiev model (solid line)
 - LA150H library simulation (dash-dotted line)
 - \circ experimental data
- Event distributions of the neutron-induced fission of ²³⁸U nucleus were used for calculation of the fraction of fission induced by high-energy peak neutrons.
- Fractions calculated using the Prokofiev model reasonably agrees with the experimental results.
- Results of the similar calculations from the LA150H library are in disagreement with the experiment.
- The Prokofiev systematics should be used with caution al lower neutron energies.

Further development of the ⁷Li-proton file in the LA150 library is needed.

⁷Li(p,n) measured by Uwamino et al.

- Differential CS for $E_p = 20$, 30 and 40 MeV measured, for E_p between 25 and 800 MeV collected to get universal curve.
- The $n_0 + n_1$ neutron fluence in the forward direction

$$\phi_{\text{peak},\theta=0} = N_{\text{Be}-7}R$$
 (n sr⁻¹), $N_{\text{Be}-7}$ number of the produced
⁷Be nuclei in the Li target

$$R = \frac{(-\sigma)^{n-1}}{\int_{4\pi} (d\sigma/d\Omega) d\Omega}$$
 (sr⁻¹), R index of forwardness

$$R = -5.155 \times 10^{-13} E_{p}^{4} + 4.409 \times 10^{-9} E_{p}^{3}$$
$$+ 2.483 \times 10^{-5} E_{p}^{2} + 6.521 \times 10^{-2} E_{p} - 0.8636,$$

Comparison of the measured and LA150H obtained CS of the ⁷Li(p,n)⁷Be reaction

- 2-mm Li target bombarded by protons at energies between 20 and 35 MeV was chosen as the input data for simulation.
- The MCNPX simulation of the n₀ + n₁ neutron flux in the forward direction using LA150H was performed.
- The MCNPX calculated neutron flux was divided by R to obtain ⁷Be yield.

The comparison of ⁷Be yield, obtained by the MCNPX, with our measured data shows the LA150H data discrepancy with experiment.

Comparison of the measured and LA150H obtained CS of the ⁷Li(p,n)⁷Be reaction

Part of the $n_0 + n_1$ CS data collected and fitted by Mashnik was compared with CS obtained in our measurements.

The comparison of the $n_0 + n_1$ CS data given by Mashnik with our measured data shows the LA150H data discrepancy with experiment.

Comparison of the measured and LA150H obtained angular distribution of the ⁷Li(p,n)⁷Be reaction

TOF measurement in NPI

- CAEN V1751 digitizer: 1GHz sampling rate, 10 bits resolution
- Simultaneous sampling of the anode signal from the scintillation probe and the cyclotron accelerating frequency (RF)

TOF measurement in NPI

This approach removes the necessity to know the whole response function of the scintillator, the results are based only on the number of hydrogen atoms in the scintillator and on the cross-section of elastic scattering of neutrons on hydrogen, which are both accurately known.

Comparison of energy dependence of neutron yield

- Our TOF measurement is in good agreement with Uwamino
- The MCNPX calculated dependence markedly differs from our and Uwamino dependence.

Conclusions

- LA150H library does not contain Uwamino data.
- The simulations of neutron energy spectra for $E_p = 50-200$ MeV, using LA150H library, disagrees with the experimental data.
- The comparison of ⁷Be yield, obtained by the LA150H based MCNPX calculation, with our and Uwamino measured data for $E_p = 20-35$ MeV shows the LA150H data discrepancy with experiment.
- CS data given by Mashnik does not agree with our measured data.
- Angular distributions obtained by the MCNPX calculation does not agree with angular distribution measured by Uwamino.
- The n₀+n₁ yield at 0 deg simulated by MCNPX disagrees with the our and Uwamino measurement.

Therefore

Further development of the ⁷Li-proton file in the LA150 library is needed.

Thank you for your attention