Project SPIRAL2-CZ in NPI CAS

Jaromir Mrazek

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

This work was supported by OP RDE, MEYS, Czech Republic under the project SPIRAL2-CZ, CZ.02.1.01/0.0/0.0/16_003/0001679

What is GANIL/SPIRAL2

1975 - Decision to build "GANIL"

1983 – first experiment

GANIL -

Grande Accélérateur National d'Ion Lourdes

GANIL

Two cyclotrons CSS1 CSS2

- stable beams
- beams by fragmentation

One post-acceleration cyclotron for radioactive species at low energies "SPIRAL"

SPIRAL2/NFS presented by X.Ledoux

Primary goal – neutron beams

Since

- close to LINAC
- intensive beams (limit 50uA / 5mA)
- 1st equipment to be commissioned

Secondary goal

- charged particle experiments

Czech Republic interests

Program of Activation by charged particles

- E.Simeckova, NPI CAS, M+V Avrigeanu, IFIN HH

Radioisotopes for medicine

- O.Lebeda, G. de France

Nuclear astrophysics

- J.Mrazek, F.de Oliveira, B.Bastin

SPIRAL2-CZ

Program of Activation by charged particles

- E.Simeckova, NPI CAS, M+V Avrigeanu, IFIN HH

Radioisotopes for medicine

- O.Lebeda, G. de France

Nuclear astrophysics

- J.Mrazek, F.de Oliveira, B.Bastin

SPIRAL2-CZ

Czech Republic contribution to SPIRAL2

NPI CAS

SPIRAL2-CZ

has appeared on the roadmap of large research infrastructures of Czech Republic 2016-2022

Plan of support from MEYS (plan 7 years)

LM SPIRAL2-CZ (4 y., to 7 y)

 infrastructure development

SPIRAL2-CZ-OP (3.r)

Operational program EU

- Investments
- research

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Activation by charged particles in NFS - experimental equipment: irradiation chamber`+ PTS

Experiments at low energies in NFS - nuclear astrophysics context

Activation by charged particles: motivation

presentation of M.Avrigeanu

- NPI CAS Rez
- deuterons in up to 20 MeV
- half-lives limited by stack handling

• SPIRAL2/NFS

- deuterons up to 40 MeV
- short-lived isotopes

Activation by charged particles - mechanical concept 1

See E.Simeckova presentation

Activation by charged particles - mechanical concept 2

Detail of the irradiation system – R.Behal

rotating **degrader** – 12 positions

one more **electrode** between degrader and Faraday system

Faraday in **contact** with the **rabbit** - **thermal** - **electrical**

degrader and Faraday are cooled

Irradiation Chamber in SPIRAL2/NFS

PTS – Pneumatic Transfer System from KIT for Irradiation Chamber

Delivered by A.Klix, U.Fischer from KIT Karlsruhe,

based on system of TU Dresden

PTS – Pneumatic Transfer System from KIT for Irradiation Chamber

Delivered by A.Klix, U.Fischer from KIT Karlsruhe, **TU Dresden:** n – activation photo

PTS – Pneumatic Transfer System from KIT for Irradiation Chamber

Fortunate situation for NPI

but modifications needed:

- sample foil placement from side
- rabbit orientation at
 - HPGe station
 - Irradiation Chamber
- rabbit (Aluminium) is heavier
 new braking system at all points

- PTS coupling to a complex control system

Delivered by A.Klix, U.Fischer from KIT Karlsruhe, based on system of TU Dresden

rabbit orientation by magnets

PTS – Pneumatic Transport System from KIT

air brake system for heavy weight rabbits

PTS in SPIRAL2/NFS - TOF hall end

Activation by charged particles in NFS - experimental equipment: irradiation chamber`+ PTS

Experiments at low energies in NFS

- nuclear astrophysics context

p-process

35nuclei

Scenario : (gamma,n) reactions, after (gamma,p) and (gamma,alpha) continue

Lol: B. Bastin, G. Randisi, C. Ducoin, I. Companis, S. Harissopulos *et al.* GANIL, INPL, NCSR "Demokritos", Subatech, LPC Caen, CEA-DAM, IFIN-HH, ATOMKI, University of Jyvaskyla, NPI CAS and IPN Orsay.

Reviews :

slide courtesy of Beyhan Bastin, GANIL

Lol: B. Bastin, G. Randisi, C. Ducoin, I. Companis, S. Harissopulos *et al.* GANIL, INPL, NCSR "Demokritos", Subatech, LPC Caen, CEA-DAM, IFIN-HH, ATOMKI, University of Jyvaskyla, NPI CAS and IPN Orsay.

FIG. 3: ${}^{74}Ge(p,\gamma){}^{75}As$ cross section. Symbols : experimental data from [22]. Curves : Talys calculations, varying three input parameters : gamma strength (left), level density (middle) and optical potential (right). The shadowed region indicates the Gamow window for $T_9 = 1.5 - 3.5$.

FIG. 4: Sensitivity of the ¹⁰²Pd(α, γ) cross section to different (a) optical model potentials [20, 21, 23], (b) nuclear level densities [24] and (c) gamma strengths [25–28]. Several phenomenological and semi-microscopic models implemented in the TALYS code [29] are compared. The shadowed area indicates the relevant energy range for (α, γ) reactions at 1.5 $\leq T_9 \leq$ 3.5 [30].

slide courtesy of Beyhan Bastin, GANIL

Lol: B. Bastin, G. Randisi, C. Ducoin, I. Companis, S. Harissopulos *et al.* GANIL, INPL, NCSR "Demokritos", Subatech, LPC Caen, CEA-DAM, IFIN-HH, ATOMKI, University of Jyvaskyla, NPI CAS and IPN Orsay.

Different GLOBAL α -OMP available: Demetriou et al. (2002); Avrigeanu et al. (2014), etc...fitted on many low-energy cross sections (α , γ), (α ,n), (n, α), (α ,p), scattering, ...

Relatively different predictions of (α, γ) reaction rates $(2 \le T_g \le 3)$

- New α -OMP (S. Gorieli, V. Demetriou, C. Ducoin...)
- Experiments with ⁴He beams @ Rez

presentation of V.Avrigeanu

Lol: B. Bastin, G. Randisi, C. Ducoin, I. Companis, S. Harissopulos *et al.* GANIL, INPL, NCSR "Demokritos", Subatech, LPC Caen, CEA-DAM, IFIN-HH, ATOMKI, University of Jyvaskyla, NPI CAS and IPN Orsay.

3 experimental campagnes foreseen : Activation and 2 in-beam

Critical p-process Reaction Rates (list of day one experiments-easy cases)

(will be updated)

(p, γ)	(p,n)	(α, γ)
$^{72}\mathrm{Ge}(p,\gamma)^{73}\mathrm{As}$	${ m ^{76}Ge}(p,n){ m ^{76}As}$	$^{70}\mathrm{Ge}(lpha,\gamma)^{74}\mathrm{Se}$
$^{74}\mathrm{Ge}(p,\gamma)^{75}\mathrm{As}$	$^{75}{ m As}(p,n)^{75}{ m Se}$	92 Mo $(\alpha, \gamma)^{96}$ Ru
$^{77}\mathrm{Br}(p,\gamma)^{78}\mathrm{Kr}^*$	${}^{85}{ m Rb}(p,n){}^{85}{ m Sr}$	$^{102}\mathrm{Pd}(\alpha,\gamma)^{106}\mathrm{Cd}$
$^{83}\mathrm{Rb}(p,\gamma)^{84}\mathrm{Sr}^{*}$	${}^{86}\mathrm{Kr}(p,n){}^{86}\mathrm{Rb}$	$^{106}\mathrm{Cd}(\alpha,\gamma)^{110}\mathrm{Sn}$

note : (p,γ) : 1.5 - 5.0 MeV (α,γ) : 3.5 - 11.0 MeV

Very intense low energy beams A/Q≈6 & SC ECR Phoenix V2 P⁺ D^+ ions ions beam O/A 1/21/3 1/6 1 Max. I (mA) 5 5 1 33 Max E (MeV/A) 20 14.5 8 < 200 beam power (kW) ≤ 165 < 44 < 48 R. Ferdinand et al., Proceedings of IPAC2013 Note E_{min} = 0,75 MeV/u (RFQ)

Experiment challenge under study : use of radioactive targets!

contact person : B. Bastin

Lol: B. Bastin, G. Randisi, C. Ducoin, I. Companis, S. Harissopulos et al. measurement methods foreseen

Activation (GANIL)	In-beam spectroscopy	
γ decay	γ from de-excitation IN BEAM (point cible)	
Irradiation setup + OFF LINE	<u>"γ-summing"(Demokritos)</u>	Angular distributions (IPNL)
Advantages Direct measurement Low Background Good resolution	Advantages Covers 4π	Advantages High resolution (compared to γ-summing)
Constraints/Disadvantages Required enriched targets Difficult if $T_{1/2}$ such that $t_{offline} \ge 1$ mois	Constraints/Disadvantages Beam purity DM in case of huge count rate Low resolution	Constraints/Disadvantages Difficulty to cover 4π (compton) DM in case of huge count rate
IRRADIATION SETUP		

SuN Detector (MSU)

45 mm

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

- LEA NuAG Nuclear Astrophysics and Grids
- new (2016) research infrastructure in Czech Republic **SPIRAL2-CZ**
- research infrastructure of NPI CAS Rez open access CANAM

NPI CAS Rez – Eva Simeckova, J.Mrazek, M. Stefanik, I.Sivacek, M.Majerle, M.Ansorge, O.Lebeda F.Vesely, R.Behal, V.Glagolev, M.Rodak, O.Jurencak, M.Gschray, J. Gabrhel...

KIT Karlsruhe – Axel Klix, Ulrich Fischer, Thorsten Reimann

IFIN-HH Bucharest – M.Avrigeanu, V.Avrigeanu, C.Costache (theory support)

GANIL – X.Ledoux, G. de France, J.Grynier, F. de Oliveira, B.Bastin J.C.Foy, Y.Georget, V.Morell, N.Menard, Gael and Alexandre Lebec ...

LoI : B. Bastin, G. Randisi, C. Ducoin, I. Companis, S. Harissopulos *et al.* **measurement methods foreseen**

Activation (GANIL)	In-beam spectroscopy	
γ decay	γ from de-excitation IN BEAM (point cible)	
Irradiation setup + OFF LINE	<u>"γ-summing"(Demokritos)</u>	Angular distributions (IPNL)
Advantages Direct measurement Low Background Good resolution	Advantages Covers 4π	Advantages High resolution (compared to γ-summing)
Constraints/Disadvantages Required enriched targets Difficult if $T_{1/2}$ such that $t_{offline} \ge 1$ mois	Constraints/Disadvantages Beam purity DM in case of huge count rate Low resolution	Constraints/Disadvantages Difficulty to cover 4π (compton) DM in case of huge count rate
IRRADIATION SETUP	16" 45 mm	BRAM

HPGe

or

Si(Li)

OFF-LINE SETUP

HPGe

Si(Li)

or

1

SuN Detector (MSU) Stuttgart HPGe Array Courtesy of Beyhan Bastin, GANIL

HPGe

BGO

Isotopic abundances

Carbonaceous chondrites

SiC

Solar system contains material from multiple dead stars in Solar system – isotopic ratios are equilibrated due to mixing during formation Inclusions in meteorites are of interest - old (not undergone a complete mixing)

- extrasolar - information on variations

E719 : Precise direct measurements of the key ²⁸Si(p,γ)²⁹P and ²⁹Si(p,γ)³⁰P reaction rates to **understand the origin of presolar nova grains**

(F. Boulay, B. Bastin, J. Mrazek)

GANIL, CEA-DAM, NPI CAS, LPC Caen, IPN Orsay, CSNSM, IPN Lyon, JYFL, Instituto de Fisica Corpuscular (Valencia), NCSR "Demokritos" and Subatech

Necessity to constrain the reaction rates ${}^{28}Si(p,\gamma){}^{29}P$ and ${}^{29}Si(p,\gamma){}^{30}P$ which have currently 21 % and 30 % uncertainties.

Aim : reduce the uncertainties on the reaction rates ${}^{28}Si(p, \gamma){}^{29}P$ and ${}^{29}Si(p, \gamma){}^{30}P$ as much as possible in the Gamow window (GW) (60 ->560 keV). Courtesy of Beyhan Bastin, GANIL

Presolar SiC grain

E719 : Precise direct measurements of the key ²⁸Si(p,γ)²⁹P and ²⁹Si(p,γ)³⁰P reaction rates to **understand the origin of presolar nova grains**

(F. Boulay, B. Bastin, J. Mrazek)

GANIL, CEA-DAM, NPI CAS, LPC Caen, IPN Orsay, CSNSM, IPN Lyon, JYFL, Instituto de Fisica Corpuscular (Valencia), NCSR "Demokritos" and Subatech

State of art

- No measurement from 1990
- Current measurement at low energy at LENA facility for ${}^{29}Si(p, \gamma){}^{30}P =>$ International competition.

$Y = \frac{N_r}{N_r}$	$-=\frac{M_p+M_t}{2}$	$\chi^2_r = \omega \gamma$
$\eta(E)N_{p}$	M_{t}	2 $\varepsilon_{\mathbf{r}}(E)$
	Graff et al. (1990) @653 keV	
Efficiency detection (η)	5 %	
Statistics (Nr)	30 %	
Current measurement (Np)	5 %	Can be improved
Total Yield	31 %	
Beam energy	0.5 %	
Stopping power	10 %	
Total gamma strength	31 %	

Severals measurements at different energies in the most intense proton beam facilities in the world has to be done

SPIRAL 2 facility will provide the most intense proton beam at 0.733 MeV in Europe Courtesy of Beyhan Bastin, GANIL

E719 : Precise direct measurements of the key ²⁸Si(p,γ)²⁹P and ²⁹Si(p,γ)³⁰P reaction rates to **understand the origin of presolar nova grains**

(F. Boulay, B. Bastin, J. Mrazek)

GANIL, CEA-DAM, NPI CAS, LPC Caen, IPN Orsay, CSNSM, IPN Lyon, JYFL, Instituto de Fisica Corpuscular (Valencia), NCSR "Demokritos" and Subatech

NeoPtolemos: The $4\pi \gamma$ -summing deterctor at the TANDEM Accelerator Lab. of "Demokritos"

A 14"x14" cylindrically-shaped NaI(TI) crystal segmented in two parts

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

- LEA NuAG Nuclear Astrophysics and Grids
- new (2016) research infrastructure in Czech Republic **SPIRAL2-CZ**
- research infrastructure of NPI CAS Rez open access CANAM

NPI CAS Rez – Eva Simeckova, J.Mrazek, M. Stefanik, I.Sivacek, M.Majerle, M.Ansorge, O.Lebeda F.Vesely, R.Behal, V.Glagolev, M.Rodak, O.Jurencak, M.Gschray, J. Gabrhel...

KIT Karlsruhe – Axel Klix, Ulrich Fischer, Thorsten Reimann

IFIN-HH Bucharest – M.Avrigeanu, V.Avrigeanu, C.Costache (theory support)

GANIL – X.Ledoux, G. de France, J.Grynier, F. de Oliveira, B.Bastin J.C.Foy, Y.Georget, V.Morell, N.Menard, Gael and Alexandre Lebec ...

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

- LEA NuAG Nuclear Astrophysics and Grids
- new (2016) research infrastructure in Czech Republic **SPIRAL2-CZ**
- research infrastructure of NPI CAS Rez open access CANAM

NPI CAS Rez – Eva Simeckova, J.Mrazek, M. Stefanik, I.Sivacek, M.Majerle, M.Ansorge F.Vesely, R.Behal, V.Glagolev, M.Rodak, O.Jurencak, M.Gschray, J. Gabrhel...

KIT Karlsruhe – Axel Klix, Ulrich Fischer, Thorsten Reimann

IFIN-HH Bucharest – M.Avrigeanu, V.Avrigeanu, C.Costache (theory support)

GANIL – X.Ledoux, G. de France, J.Grynier, F. de Oliveira, B.Bastin J.C.Foy, Y.Georget, V.Morell, N.Menard, Gael Lebec ... end. thank you

p-process

35nuclei

from 74Se to 196Hg

discrepancies: Mo, Ru, Sn, La, Gd underproduced

Scenario : (gamma,n) reactions, after (gamma,p) and (gamma,alpha) continue

Isotopic abundances

Carbonaceous chondrites

SiC

Solar system contains material from multiple dead stars in Solar system – isotopic ratios are equilibrated due to mixing during formation Inclusions in meteorites are of interest - old (not undergone a complete mixing)

- extrasolar - information on variations

Aktivace nabitými částicemi na NFS responsible Eva Šimečková

První experiment byl schválen na Progam Advisory Committee

Excitační funkce krátko-žijících izotopů na ^{nat} Fe

- krátkožijící izotopy a izomery Fe, Co, Mn, Cr

- možná vůbec první experiment na SPIRAL2

SPIRAL2-CZ-OP další plány: alfa + Zn, alfa + ¹²⁴I

Radioizotopy – výzkum pro medicínu

responsible Ondřej Lebeda

Značené molekuly ²⁰⁹ Bi(α ,2n) ²¹¹At, kandidát na theranostikum ⁶⁸Ga

ORF ÚJF AVČR – dlouholeté zkušenosti s výzkumem

Investice + výzkum SPIRAL2-CZ-OP

Jaderná astrofyzika responsible Jaromir Mrázek

Produkční terč ROBOT (Řež - Other Beams Other Targets) produkce izotopů ^{14,15}O, které hrají roli např. při hot CNO cyklu a jejichž svazky jinak na SPIRAL2 nebudou.

SPIRAL2-CZ-OP investice

Outlooks