Workshop on TALYS/TENDL Developments

Center of Accelerators and Nuclear Analytical Methods - CANAM

Nuclear Physics Institute of the CAS public research institution

THE BENCHMARK OF THE EAF-2010 NEUTRON CROSS-SECTIONS IN THE ENERGY RANGE 20-35 MEV

M. Majerle, M. Ansorge, P. Bém, J. Novák, E. Šimečková, M. Štefánik

Nuclear Physics Institute of the CAS, Řež

Outline

- F4E-2009-GRT-056, (n,xn) on Nb, Co
- F4E-FPA-395 (2013-present), gas production (n,cp) on steel components, Fe, Cr, Ta, W
- IRDFF v1.05 benchmarking (2016), (n,x) on Au, Bi, Co, Fe, Tm (decrease uncertainties)
- EAF-2010 for CS extraction, but TENDL-2015 was used several times during in the analysis, some problems are pointed out
- Activation method (irradiation in known neutron spectrum, HPGe measurements)
- Neutron source (p+Li)
- Neutron spectra (Li library needs update, next talk by J. Novák)
- Cross-section extraction
- Uncertainties
- Cross-section data

Neutron source

- Above 20 MeV quasimonoenergetic spectrum
- Reaction p+Li
 - Direct component peak neutrons (Q=1.6 MeV), main peak (ground and first excited ⁷Be) and smaller peaks
 - Compound component (isotropic emission at lower energies).

Mashnik evaluation, https://arxiv.org/abs/nucl-th/0011066v1

Neutron source at NPI, p+Li (2mm)

Neutron spectra

Number of peak neutrons

- Number of produced ⁷Be (measured by 1,6E+15 HPGe in the Li after irradiation, 2%) = 1.4E+15 number of monoenergetic neutrons in 4π \times Forward directed neutrons - calculation
- Experimental measurement by NE213

Shape of the neutron spectra TOF measurement, normalized to (n,p) on ¹H Comparison of experimental and Cyclotron RF period: 40-50 ns, frame overlap (ca. 15MeV) simulated neutron spectra 7,E+08 TOF measured with NE213 2"x2" at 4-5m, CAEN -20160127 pLi27.69MeV 6,E+08 digitizer **Nentron first** 5,E+08 4,E+08 3,E+08 2,E+08 2,E+08 20130322_Li27MeV Proton recoil telescope TOF matrix, protons on Li, 22.5 MeV, NE213 at 4.39 m MCNPX NE213 deposited energy [MeVee] 14 Monoenergetic peak 10³ 12 max. and 0.75*max 10 1,E+08 10² 8 0,E+00 Neutron energy [MeV] 15 25 10 30 10 2 4.43 MeV gammas from carbon stopper 9L 100 110 Time of flight [ns] 60 80 TALYS/TENDL WORKSHOP 7

Spectra+input XS=reaction rate

(n,xn) on Au, Bi, Co, Nb

(n,3n) on ⁹³Nb

TALYS/TENDL WORKSHOP

Gas production in ITER steel

- Measurements 2013-present, F4E-FPA-395
- Fe and Cr F4E final report, INDC(CZR)-0003,
- Cu and V ND2016 proceedings
- (n,cp) usually shorter lifetime (minutes), pneumatic post system
- Several channels lead to the same residual, eg. (n,α), (n,2n+2p), (n,2d) ...
- Natural isotope composition

CS status in EXFOR

26-FE-0(N,X)25-MN-52

26-FE-54(N,P)25-MN-54

Neutron sources, pneupost

Li target station

station

TENDL-2015 & PREPRO

50Cr(n,n+d)48V

MT = 32											
MAT 2425			0.0 Ke		lvin Unshielded Cross Sections			ns	24-Cr-50		
No.	Group-eV	Average	No.	Group-eV	Average	No.	Group-eV	Average	No.	Group-eV	Average
			~~								
78	19250000.02	23915E-12	99	24500000.0	.004139695	120	29750000.0	.01/4264/5	141	35000000.0	0.0
79	19500000.0	9.2761E-12	100	24750000.0	.004794705	121	30000000.0	0.0	142	35250000.0	0.0
80	19750000.01	.64736E-11	101	25000000.0	.005481754	122	30250000.0	0.0	143	35500000.0	0.0
81	2000000.01	.145618E-7	102	25250000.0	.006200842	123	30500000.0	0.0	144	35750000.0	0.0
82	20250000.03	.436453E-7	103	25500000.0	.006919929	124	30750000.0	0.0	145	36000000.0	0.0
83	20500000.05	.727288E-7	104	25750000.0	.007639017	125	31000000.0	0.0	146	36250000.0	0.0
84	20750000.08	.018123E-7	105	26000000.0	.008337203	126	31250000.0	0.0	147	36500000.0	0.0
85	21000000.0	7.11141E-6	106	26250000.0	.009014488	127	31500000.0	0.0	148	36750000.0	0.0
86	21250000.01	.950152E-5	107	26500000.0	.009691773	128	31				.0
87	21500000.03	.189163E-5	108	26750000.0	.010369058	129	32 ZER	OS abov	е З	80 MeV	.0
88	21750000 04	428174F-5	109	27000000 0	011030188	130	32				0
80	22000000 01	327648F_4	110	27250000.0	011675163	131	32500000 0	0.0	152	37750000 0	0.0
0.9	222500000.01	072400F 4	111	27200000.0	012220120	122	22750000.0	0.0	152	20000000.0	0.0
90	22250000.02		111	27500000.0	.012520156	134	32750000.0	0.0	100	38000000.0	0.0
91	22500000.0	4.61917E-4	112	27750000.0	.012965113	133	33000000.0	0.0	154	38250000.0	0.0
92	22750000.06	5.264931E-4	113	28000000.0	.013575338	134	33250000.0	0.0	155	38500000.0	0.0
93	23000000.09	0.329547E-4	114	28250000.0	.014150813	135	33500000.0	0.0	156	38750000.0	0.0
94	23250000.0	.001381302	115	28500000.0	.014726288	136	33750000.0	0.0	157	39000000.0	0.0
95	23500000.0	.001829649	116	28750000.0	.015301763	137	34000000.0	0.0	158	39250000.0	0.0
96	23750000.0	.002277996	117	29000000.0	.015851925	138	34250000.0	0.0	159	39500000.0	
97	24000000.0	.002829675	118	29250000.0	.016376775	139	34500000.0	0.0			
98	24250000.0	.003484685	119	29500000.0	.016901625	140	34750000.0	0.0			

Au, Bi, Co, Fe, Tm – again and better

- IRDFF v1.05 benchmark
- Decrease uncertainties
- ^{nat}Li instead of ⁷Li, direct normalization to ⁷Be production
- Reevaluation of neutron spectra
- But results are so far not reflecting our efforts...

TALYS/TENDL WORKSHOP

Au, Bi, Co, Fe, Tm – again and better

TALYS/TENDL WORKSHOP

Detection of charged particles

Under construction at NPI

- Gas production in materials
- Direct detection of charged particles, complementary to residual detection with HPGe
- Charged particles lose energy in the sample
- Several QM n beams, unfolding for CS

Online γ spectrometer

- (n,*γ) reactions
- ms-s isotopes eg.
 ²⁰⁹Bi(n,2n)^{208m}Bi in PbBi alloy
- Custom timing, U120M cyclotron driven by arduino
- Acquisition with CAEN digitizers
- Ready in 2018

15.11.2017

Conclusion

- EAF-2010 was used, TENDL/TALYS could be used
- Good agreement C/E, systematic deviation $(n,p+\alpha)$
- CS are sensitivite to neutron spectrum uncertainty
- Always publish bare reaction rates for later reinterpretation!
- New p+Li evaluation in preparation (next talk)
- Uncertainties below 10%
- New online measurement possibilities in 2018-2019 (chamber for light ion detection, HPGe detector array)

Thank you

