

THE NEUTRONS FOR SCIENCE FACILITY AT SPIRAL-2

Ledoux X.¹, Aïche M.⁴), Avrigeanu M.¹⁰, Avrigeanu V.¹⁰, Balanzat E.¹⁴, Ban-d'Etat B.¹⁴, Ban G.⁵, Bauge E.³, Bélier G.³, Bém P.⁷, Borcea C.¹⁰, Caillaud T.³, Chatillon A.³, Czajkowski S.⁴, Dessagne P.⁶, Doré D.², Fischer U.⁹, Frégeau M.O.¹, Grinyer J.¹, Guillous S.¹⁴, Gunsing F.², Gustavsson C.⁸, Henning G.⁶, Jacquot B¹, Jansson K.⁸, Jurado B.⁴, Kerveno M.⁶, Klix A.⁹, Landoas O.³, Lecolley F.R.⁵, Lecouey J.L.⁵, Majerle M.⁷, Marie N.⁵, Materna T.², Mrázek J.⁷, Negoita F.¹⁰, Novák J.⁷, Oberstedt S.¹¹, Oberstedt A.¹⁵, Panebianco S.², Perrot L.¹³, Plompen A.J.M.¹¹, Pomp S.⁸, Prokofiev A. V.⁸, Ramillon J.M.¹⁴, Farget F.¹, Ridikas D.², Rossé B.³, Serot O.¹², Simakov S.P.⁹, Šimečková E.⁷, Stanoiu M.¹⁰, Štefánik M.⁷, Sublet J.C.¹⁶, Taïeb J.³, Tarrío D.⁸, Tassan-Got L.¹³, Thfoin I.³, Varignon C.³

¹ GANIL, Caen, France ²CEA/DSM/IRFU/SPhN, Saclay, France ³ CEA/DAM/DIF, F-91297, Arpajon, France ⁴CENBG, Gradignan, France ⁵LPC, Caen, France ⁶IPHC, Strasbourg, France ⁷NPI, Řež, Czech Republic ⁸Uppsala University, Uppsala, Sweden ⁹FZK, Karlsruhe, Germany ¹⁰NIPNE. Bucharest. Romania ¹¹European Commission, JRC-IRMM, Geel, Belgium ¹²CEA/DEN, Cadarache, France ¹³IPNO. Orsav. France ¹⁴CIMAP, Caen, France ¹⁵ELI-NP. Bucharest-Magurele, Romania ¹⁶ Culham Centre for Fusion Energy, United Kingdom

- Pulsed neutron beam
- Continuous spectrum : d + thick converter
- QMN spectra : p + thin converter
- Neutron energy range 1-40 MeV
- Measurements by activation method

Physics case

- Fundamental physics
- □ Astrophysics
- □ New generation of reactor
- □ Fusion technology
- □ Radioisotopes production for medical applications
- □ Biology (cells irradiation..)
- Development and characterization of new detectors
- □ Study of the single-event upsets

GANIL/SPIRAL-2
NFS
Firsts experiments

GANIL/SPIRAL-2

NFS

□ Firsts experiments

GANIL

Grand Accélérateur National d'Ions Lourds

- □ National Facility, located at Caen, France
- □ First beam in 1983
- □ 250 permanent people (≈25 nuclear physicists)
- \Box 700 scientific visitors per year

Fundamental physics

Industrial applications

GANIL/SPIRAL 2 facility

SPIRAL 2 construction phases

Main objectives:

- Increasing the RIB production by a factor 10 to 1000
- Extend the range of beams nuclei Z>40 A>80

Technique :

- Primary beam of high intensity to produce high neutron flux
- Neutron induced fission of 238U
- UCx target
- Post-Acceleration of secondary beam with the CIME cyclotron

Linear accelerator: p and d up to 5mA, HI up to 14,5 MeV/A

SPIRAL-2 phase 1 building

GANIL/SPIRAL-2

□ NFS

□ Firsts experiments

NFS layout

Continuous spectrum

40 MeV d+ Be (6 mm)

Quasi-mono-energetic spectrum

p+⁷Li -> n + ⁷Be Q= -1.64 MeV

NFS: The converter room

NFS: The TOF area

Measurement by activation method

 $d\Phi/dlnE (n/cm^{2}/s)$ 10 10 11 10 11 $I = 50 \mu A$ 1- Sample irradiation in the converter room D = 0.05 m- Neutron irradiation - Spectrum similar to IFMIF 40 MeV d + Be $-\Phi > 10^{11} \text{ n/s/cm}^2$ 33 MeV d + Be 33 MeV d + C 10¹⁰ 2- Sample transfer system 10⁹ 36 MeV p + Li 10 15 30 35 40 5 20 25 Energy (MeV) See J. Mrazek's talk 3- Activity measurement Cross-section measurements by activation method Study of radioisotope production

- All ions accelerated by the LINAC can be used at NFS
- In the converter room only
- Experiment type:
 - Activation technique
 - Vacuum chamber + detector
- Energy domain
- Imax :
 - P< 2 kW in any case (thermal constrains only)
 - P> 2 kW to be studied case by case (thermal and radiological constrains)

Irradiation station connected to the pneumatic transfer system

Neutron transport simulations

- Neutron transport simulations are needed for :
 - Safety purpose
 - Background evaluation
- Simulations characteristics :
 - MCNPX neutron code
 - Neutron source d+Be and p+⁷Li
 - Faithful geometry of the buildings

- 1- MCNPX \rightarrow neutrons flux in all cells
- 2- FISPACT + scenario \rightarrow Activity in each cell for several cooling times
- 3- Creation of associated gamma sources
- 4- MCNPX \rightarrow ambiance equivalent dose calculation

Calculation for beam profile and neutron background

Detector based on liquid scintillator EJ309

- Neutron spectrum and flux measurement by the TOF technique
- n-γ discrimination by pulse shape analysis
- Characterization

 $_{\odot}$ at Ganil reaction 10,5 MeV/A Kr + Cu

- Light response between 5 and 30 MeV
- $_{\odot}$ at CEA/DIF

Light responce of EJ309 scintillator

- Mono-energetic neutrons at 4, 5, 6 and 15 MeV
- Efficiency measurement

□ Proton recoil telescope

- CH2 radiator + ΔΕ-ΔΕ-Ε Si telescope
- Prototype tested at GANIL

□ Ready and installed:

- Collimator
- Beam line in the converter room
- Vacuum
- Automation
- Irradiation station
- Pneumatic transfer system

Built but not yet fully installed :

- Rotating converter
- Beam line in the TOF hall
- Single bunch selector
- Neutron beam dump

Not yet built

• 2nd collimator : under conception (deliver by end of 2018)

Milestones

- J1: Vacuum + interlock (30 Sep 2017)
- J2: Irradiation station + pneumatic transfer system (31 Jan 2018)
- J3: Rotating converter + SGAF (31 May 2018)

GANIL/SPIRAL-2 NFS Firsts experiments

Lol and proposals for Day-One experiments at N

Neutron induced reactions studies :

- Lol_13 : Study of pre-equilibrium process in (n,xn) reaction, X. Ledoux
- Lol_14 : Comparison between activation and prompt spectroscopy as means of (n,xn) cross section measurements, M. Kerveno
- Lol_20 : Direct measurement of (n,xn) reaction cross sections on ²³⁹Pu, G. Bélier
- Lol_21 : Light-ion production studies with Medley, S. Pomp
- SCALP Scintillating ionization Chamber for ALpha particle Production in neutron induced reaction, G. Lehaut

Fission :

LoI_15 : Fission fragment distributions and neutron multiplicities, D. Doré

Lol_22 : Fission fragment angular distribution and fission cross section measurements relative to elastic np scattering with Medley, S. Pomp

Lol_28 : Study of the fission process and fission cross-section measurements, G. Bélier

Measurements of prompt fission neutron energy spectra for fast neutron induced fission on major and minor actinides, A. Sardet

Measurement of prompt fission gamma-ray spectra in fast neutron induced-fission of actinides, J.M. Laborie

Gamma-rays spectroscopy and lifetime measurements at NFS, A. Dijon

Cross-section reaction measurements by activation technique :

Lol_16 : Proton and deuteron induced activation reactions, P. Bem

Lol_24 : Neutron-induced activations reactions, A. Klix

Measurement of cross-sections of deuteron-induced reactions on Ni and Zn, J. Grinyer

Biology :

Lol_23 : Response of Mammalian cells to neutron exposure, C. Hellweg

R&D for the production of radioisotopes for medical applications at NFS, G. De France

Investigation of 211At and 64Cu medical radioisotope production at NFS, J. Grinyer

Detector development :

Lol_29 : Neutron spectrometer characterization for LMJ project, B. Rossé

Characterization of neutron signal in Si-CsI telescope and measurement of the absolute neutron detection efficiency, E. Bonnet

CANNEL (n,xnγ) cross section measurement at NFS (Lol-14)

The $(n,xn\gamma)$ cross-section measurements are used to extract (n,xn) cross section-> need of theoretical model At NFS the ${}^{90}Zr(n,3n)$ cross-section can be measured by prompt y spectroscopy and by activation technique at the same time \rightarrow validation of the theoretical models

Quasi-mono-energetic neutrons from 26 to 32 MeV

The other (n,xn) cross-sections will be measured in following experiments

E712: Measurement of (n,xn) reaction cross sections on U238

Spokesperson : G. Bélier, CEA-DAM-DIF

Gài

- (n,xn) reaction are important channels in the 5-50 MeV range
- (n,xn) cross-section measurement of actinide is very difficult:
 - radioactive sample —
 - prompt neutron fission

Cez

Workshop on TALYS/TENDL Developments, 2017, 13-15 November 2017

E713 :Prompt fission neutron spectra measurement in neutron induced fission reactions

Spokesperson : B. Laurent, CEA-DAM-DIF

- Important in many applications :
 - -Understanding of the fission process
 - Accuracy of nuclear criticality calculation (conventional
 - and advance reactors, non-proliferation applications)
 - -Theoretical description of PFNS difficult
- Few experimental data
- Discrepancies between measurements and evaluations
- →2009 international program aiming at improving the adequacy and the quality of PFNS launched by IAEA→INDC(NDS)-0541) Experimental technique :

Fission chamber (370 mg of U238)

Array of 50 neutrons detectors

Eission fragment angular distribution and fission cross section Heasurements relative to elastic *np* scattering with Medley (Lol-21)

- Necessity of improving the quality of the standards (A.D. Carlson, Metrologia 48, S328, 2011).
- Theoretical understanding of the fission process
- Measuring the behaviour of the anisotropy where (n,nf), (n,2nf) and (n,3nf) channels open up will allow to test model calculations for the transition states.

Proposed method:

Measurement of cross sections and angular distributions for 238 U(n,f) using recoil protons from the H(n,n) reaction for normalization.

- MEDLEY detector
- **PPAC** detectors for fast ToF timing for neutron energy measurement.
- Sandwich target: ²³⁸U-CH₂-²³⁸U for measurement relative to the *np* cross section.

FALSTAFF (Lol 15)

Spokesperson: D. Doré (CEA/IRFU)

FALSTAFF : Four Arm cLover for the Study of Actinide Fission Fragments

Perform experiments in the fast domain to characterize actinide fission fragments

- Neutron Sawtooth Curve
- Important piece of information about scission
 - Excitation energy sharing
 - Shell effects
 - Energy balance

Many models exist but not predictive enough

Actinides to study: ^{235,238}U,²³⁹Pu,²³⁷Np, ²³²Th, ²³³U

Detection of fragments in coincidence

Charge

Kinetic energy

Post-masses (after n evap) \rightarrow EV method good energy resolution 1 %

Pre-masses (before n evap) \rightarrow 2V method TOF measurement time resolution < 150ps

Telescope : T1 (20deg)

Spokesperson: A. Prokofiev (Uppsala university)

- Cancer therapy and dosimetry (H, C, O, Ca, ...)
- Radiation effects in microelectronics (SEU; single event upsets) Si, O, ... Silicon and oxygen data is needed for:
- Energy applications (GenIV, fusion)
 - Construction material: Fe, Cr, ...
 - Fuel: U, Th, ...
 - Coolant: Pb, Bi, Na, ...
 - ¹⁶O(n, α) reaction affect reactor reactivity, 25% of the helium production

Tippawan et al., Phys. Rev. C 79, 064611 (2009).

Spokesperson : E. Simeckova, NPI, Rez

Measurement of reaction cross-sections by activation technique :

- data for IFMIF facility design
- improvement of reaction model
- Irradiation station + pneumatic transfer system
- proton at 33 and 25 MeV

Goal: measure the ^{58m}Co and ^{58g}Co alimentation

Other short-lived isotopes measured:

- ^{53m}Fe (2.58)
- ⁵³Fe (8.51)
- ^{54m}Co (1.48 min)
- ^{50m}Mn (1.75 min)
- ^{52m}Fe (45.9 s)

F. Boulay, B. Bastin, J. Mrazek, GANIL, IPN Orsay, CSNSM, IPN Lyon, JYFL, Instituto de Fisica Corpuscular (Valencia), NCSR "Demokritos" and Subat

Study of alternative route production of several radioisotopes used in medical applications
 SPIRAL-2 :

 \circ alpha, HI beams

 $_{\odot}$ tunable energy

Production of alpha emitters

Example : production of ²¹¹As (α emitter, T_{1/2} = 7.2 h)

²¹³Bi is in the decay chain of ²²⁵Ac produced by various means:

- From aged ²³³U (limited access)
- ²²⁶Ra target irradiation
 - High flux reactor → large yield of ²²⁸Th
 → shielding issue
 - Direct reactions (p,2n) or (γ,n)
 - Continuous production of ²²⁶Ra = challenging
- 232 Th target irradiation by high energy protons \rightarrow spallation reactions

Exploration a new production method of ²¹³Bi via the α +²³²Th reaction

• MCNPX+FISPACT II vs. PHITS

200 μ Ae 80 MeV α beam on ²³²Th target 24 hours irradiation + 24 hours cooling time

- Huge disagreement observed e.g. in specific activity of ²²⁴Ra:

	MCNPX+FISPACT II	PHITS	
²²⁴ Ra	3.56×10 ⁸ Bq/g	5.34×10 ⁶ Bq/g	

- Originating from input cross sections taken from calculated (TALYS) databases (complemented with data when available)
- No data available for this mass region in α + ²³²Th

⇒ Production cross section of several isotopes of potentially great interest for TAT (e.g.
 213Bi via 225Ac and 225Ra routes)
 ⇒ Measure for the first time cross-sections for nuclear data purposes and check validity of calculated databases

- 10 experiences submitted to the PAC of 9th and 10th of June 2016 -> 7 accepted
- For the first call :
 - $_{\odot}$ no deuterons beam
 - \circ no burst selector \rightarrow limitation on realizable experiments

	NUM	Titre	Spokesperson	
Reaction model	E712	Measurement of (n,xn) reaction cross sections on U238	G. Bélier, CEA-DAM	
	E721	LIONS - Light-Ion Production Studies with Medley at the NFS facility	A.V. Prokofiev, Uppsala University	
	E713	Prompt fission neutron spectra measurement in neutron induced fission reactions	B. Laurent, CEA-DAM	
Fission	E718	Fission fragment angular distribution and fission cross section measurements relative to elastic NP scattering at 30 MeV	D. Tarrio, Uppsala University	
Fusion		Excitation functions of short-lived isotopes in proton induced reactions on ^{nat} Fe	E. Simeckova, NPI, Rez	
	E715	Neutron-induced activation reactions	A. Klix, KIT	
Radionuclei for medical applications		Alpha-induced reaction cross-section measurements on natural and enriched Zn	G. Grinyer, Ganil	
	E717	Measurements of the excitation function for the production of possible candidates for targeted alpha therapy at SPIRAL2	G. de France, Ganil	
Astrophysic	E719	Precise direct measurements of the 28Si(p,γ)29P and 29Si(p,γ)30PB. Bastin, Ganilreaction rates to understand the origin of presolar nova grainsB. Bastin, Ganil		
Instrumentation	Istrumentation E720 Measurement of the absolute neutron detection efficiency of E. Bonnet, Ganil FAZIA telescopes		E. Bonnet, Ganil	

- □ Follows the accelerator commissioning strategy : proton, alpha, HI, deuterons
- □ Realize experiments ASAP

	E(MeV)	Converter	
P r o t n	33		Beam optic
			p induced reaction cross-section measurement
	0,73		²⁸ Si(p,γ) ²⁹ P cross-section
	33	Lithium	Commissioning
		Lithium	E720 + E721
	8,5	Lithium	Commissioning
		Lithium	PFNS
	8,5 to 25	Lithium	Commissioning
		Lithium	U238(n,2n) cross-section measurement
		Thick Be	Commissioning
alpha	80		Beam optic
			Reaction cross-section measurement

NFS – Scientific program definition

NFS:

- White and quasi-monokinetic spectra in the 1-40 MeV range
- Neutron beams with high flux and good energy resolution
- Complementary to the existing n-tof facilities
- Measurements by activation reactions (n, p, d)

Day-One experiments:

- 10 experiments submitted to the PAC
- Fission studies : σ , fragments, yields, neutron and gamma multiplicities
- (n,xn) and (n,lcp) reactions: σ and $d^2\sigma/dEd\Omega$
- Proton and alpha induced reactions
- Study of radioisotope production for medical application
- Detector development

PHC

- For experiment at long distance, a 2ND collimator is needed for:
 - resizing the neutron beam
 - shielding detectors from background
- Beam line under construction at IPHC Strasbourg (Delivery in June 2017)
- Vacuum system delivered
- Collimator design and construction realized by IPHC Strasbourg

Workshop on TALYS/TENDL Developments, 2017, 13-15 November 2017

E720: Measurement of the absolute neutron detection efficiency of FAZIA telescopes

Spokespersons: E. Bonnet, N Le Neindre (LPC CAEN) **FAZIETO** p@30MeV+7Li E_{neutron} (MeV) 30- 75 Method : associated particle : 25 10³ - absolute efficiency measurement 20 - no time structure required 10² 15 - no flux measurement required 10 10 $\overset{15}{\mathsf{E}} \overset{20}{} \overset{25}{} \overset{30}{} \overset{30}{\mathsf{HeV}}$ 10 5 QME neutron beam (CH2)n target 30µm proton neutron 1 1 NFS configuration 2018