
MASTER THESIS

Martin Adam

Machine Learning in the Monitoring of
Computer Clusters

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Martin Pilát, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

To
those who helped me,
those who will be with me to celebrate
and
those who will not,

thank you.

ii

Title: Machine Learning in the Monitoring of Computer Clusters

Author: Martin Adam

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Martin Pilát, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: With the explosion of the number of distributed applications, a new
dynamic server environment emerged grouping servers into clusters, whose uti-
lization depends on the current demand for the application. Detecting and fixing
erratic server behavior is paramount for providing maximal service stability and
availability. Using standard techniques to detect such behavior is yielding sub-
optimal results. We have collected a dataset of OS-level performance metrics from
a cluster running a streaming distributed application and injected artificially cre-
ated anomalies. We then selected a set of various machine learning algorithms
and trained them for anomaly detection on said dataset. We evaluated the algo-
rithms performance and proposed a system for generating notifications of possible
erratic behavior, based on the analysis of the best performing algorithm.

Keywords: machine learning, system administration, anomaly detection

iii

Contents

Introduction 3

1 Monitoring Systems Overview 5
1.1 All-in-one Monitoring Systems . 5
1.2 Modular Monitoring Systems . 6

1.2.1 CollectD + InfluxDB + Grafana 6
1.2.2 Elastic Stack . 7
1.2.3 MONIT . 7

1.3 Monitoring Data Analysis Works 9
1.3.1 Intrusion detection . 9
1.3.2 Failure prediction . 10
1.3.3 Black-box methods . 10

1.4 Time series analysis . 10

2 Problem statement and Approach 11
2.1 Definitions . 11
2.2 Hypotheses . 11
2.3 Goals . 12
2.4 Non-goals . 12

3 Data Gathering and Aggregating 13
3.1 Recording OS Metrics using MONIT 13
3.2 Creating anomalies . 15
3.3 Initial Data Exploration . 16

4 Anomaly Detection Module 18
4.1 Data Pre-processing . 18
4.2 Unsupervised Learning . 18
4.3 Supervised Regression . 19

4.3.1 Non-Spark Model . 20
4.3.2 Spark Models . 21

5 Model Evaluation 22
5.1 Unsupervised Learning . 22
5.2 Supervised learning . 23

5.2.1 Extracting Anomaly Information from Prediction Error . . 26
5.2.2 Filtering Anomaly Notification feed 26

Conclusion 31

Bibliography 32

List of Figures 35

List of Tables 36

List of Abbreviations 38

1

A Attachments 39
A.1 Data Collection Spark Jobs . 39
A.2 Data Analysis . 39
A.3 Raw Dataset . 39

B Unsupervised Algorithms Results 40

C Raw Data Schemes 45

2

Introduction
In the last few decades the amount of digitally saved data has been growing
exponentially [1]. In 2014 the world’s technological capacity to store information
has reached almost 5 zettabytes [2]. Handling this incredible amount of incoming
data requires innovative techniques increasingly leveraging horizontal scaling; an
approach utilizing many computers instead of one more powerful. This trend,
which is only expected to grow with the predicted end of the Moores law [3],
explains the explosion of the number of distributed applications.

An application is called distributed, when its’ processes run on two or more
computers. The main benefit of this approach is being able to add a new worker
to the pool of computers running the application, when the load exceeds current
capabilities. There is also a financial motivation as several average servers tend to
be cheaper than one super-powerful, while simultaneously tackling the problem
of a single point of failure. The disadvantages stem from additional complexity
caused by not sharing one operating system. Unlike in a single host multi-process
environment, the processes of a distributed application cannot rely on a shared
memory address space for passing messages or data. Instead the network has
to be used, which brings the additional computational overhead of serialization,
communication administration and deserialization as well as a delay caused by
network latency. This is only one of many factors contributing to the additional
complexity of distributed applications compared to standard ones, other examples
are load balancing and fault tolerance.

This new approach comes with new challenges for the operations teams main-
taining the infrastructure. Most of the standard monitoring and provisioning
tools were developed to work well with standard applications, leaving most of
the administration support to be dealt with by the application itself. Each new
application therefore has its’ own approach, metrics and APIs that the system
administrators have to become familiar with and incorporate in already existing
systems. Considering the constant lack of skilled professionals [citation needed?]
this might be a problem especially when examining multiple similar solutions to
pick the best for future usage. Even after the preferred application is selected and
deployed, fully understanding a wide range of metrics and their patterns adds yet
another problem to be tackled by the already overworked administrator.

Many monitoring tools focus primarily on collecting and storing the moni-
toring data. Alarms signaling the possibility of a problem are usually based on
comparing the current value to a predefined threshold, if implemented at all. Cre-
ating more sophisticated checks by aggregating or correlating different metrics is
usually left to the user, often without providing a usable API. Even displaying
different types of metrics for a group of servers to assist with visual inspection is
not always well supported.

This work explores the possibility of using advanced data analytics to detect
anomalies implying erratic behavior of nodes in a cluster running a distributed
application. More specifically the objectives this work sets are
• to develop an infrastructure to collect, pre-process and store monitoring

data using the MONIT infrastructure,

• evaluate multiple approaches of modeling the stored data,

3

• propose an automatic procedure using a model of the data to identify errat-
ically behaving servers among the cluster running a distributed application
before the error on said server can cause a fault in the application itself.

In Chapter 1 several classical monitoring systems along with a number of
related works in monitoring data analysis are reviewed and discussed. Chapter 2
clearly states the problem hinted here and defines the goals as well as non-goals of
this work. Chapter 3 describes creating the dataset used for teaching the anomaly
detection module including the process and challenges of collecting the data and
creating artificial anomalies. Chapter 4 introduces the various approaches of
detecting the anomalies in the dataset and Chapter 5 evaluates their effectivity.
Finally the last chapter provides conclusions and hints the direction of future
work.

4

1. Monitoring Systems Overview
First an overview of three all-in-one monitoring systems will be provided. Then an
alternative approach to creating a monitoring system will be mentioned. Finally
a number of papers on analysis of monitoring data will be reviewed and discussed.

1.1 All-in-one Monitoring Systems
The following systems are examples of a complete solution covering every task
from collecting data, transporting and storing them to presenting them to the
user.

Ganglia is an open-source, scalable, distributed monitoring system developed
for large clusters and computing grids [4]. Written in C with minimizing
system requirements of the agents as a priority it became a standard for
computing center monitoring. The default installation will gather usual OS
metrics1, but additional plugins for other numeric metrics can be added by
the user. Data collecting is organized in a tier system, where only a couple
of nodes in a cluster assemble the metrics for the other and then send the
complete bundle to one central server. Clusters are displayed together on
the website making spotting differently behaving nodes easier, however no
alerting is available.

Munin is a monitoring tool developed with an emphasis on modularity and ease
of use [5]. Expanding the pre-configured set of metrics is almost effortless
making Munin perfect for unusual types of metrics. Gathered data are
displayed in charts using a simple web interface. Basic alarms based on
constant thresholds can be defined for individual metrics, however no ad-
vanced alarm handling infrastructure is available. The focus on simplicity
meant sacrificing scalability to more than 5000 hosts per instance on the
server side.

Nagios is unlike the two project mentioned earlier centered on alerting and sys-
tem state [6] rather than recording system performance. In the Core instal-
lation, metrics are not stored for historical review, instead each host con-
tains several services that change states between OK, Warning and Error.
The current service state is determined and reported by a plugin running on
the client. Plugins range from simple to complex depending on the service2

and can be added by the user.

Note that the listed tools are just examples of free options available to Linux
system administrators. Making a complete list of all-in-one monitoring solutions
is out of scope of this work.

1Metrics available from the operating system describing the load on the server. Typical set
will contain cpu metrics (percentage of user, system usage and idle), memory (size of memory
used for application, buffers and cache and left free) as well as network and disk utilization.

2Service in this context can represent a simple thing, such as the current load being under
a certain limit, but can also be complex (checking mount state and accessibility of predefined
file systems, testing a performance of an application or checking network connectivity).

5

1.2 Modular Monitoring Systems
Computing centers vary in many ways (size, provided services, administrators
experience), therefore creating one solution to fit them all is impossible. However
the basic tasks3 of the monitoring systems are always the same. Decoupling these
tasks to independent programs/modules can provide much desired flexibility of
the final system (a smaller computing center can have a simple database and
larger computing center may use a distributed storage, while they both use the
same daemon for collecting the data). The following systems are examples of
commonly used combinations.

1.2.1 CollectD + InfluxDB + Grafana
The lightweight CollectD daemon was introduced in 2005 as a simple but mod-
ular solution to the problem of gathering (and storing) system and application
performance metrics [7]. Widespread usage was aided by the daemon being writ-
ten in C, which minimized resource requirements and made it a reasonable option
even for less powerful systems. Although featuring a simple web interface for pre-
senting results, the project was from the beginning focused mainly on collecting
and secondly on storing metrics. The storage part is natively handled by the
RRDTool plugin4, which is in line with the overall simplicity and lightweightness
of the project, but sub-optimal for modern visualization and other data handling
standards.

Compensating for this weakness multiple plugins are available providing an in-
terface to many commonly used storage solutions. Moreover a universal Network
Write plugin could be used when the storage of choice is not specifically supported
as is the case of InfluxDB — the storage back-end in this example. InfluxDB
is an open-source time series database [8], which makes it ideal for storing moni-
toring data5. Expected features like data retention and down-sampling are easily
configurable, moreover a SQL-like query language is implemented for advanced
data handling. It is mentioned in this example instead of one of the storage
solutions supported by plugins because it is not specifically designed for moni-
toring data so it might be already deployed at the computing center for other
reasons. Also it is supported by the third party analytics and visualization plat-
form Grafana.

Grafana is an open-source general purpose web dashboard supporting multi-
ple storage back-ends [9]. It offers many different types of visualization methods
as well as the ability to query the data making it a great tool for visual knowledge
extraction. It also features simple threshold based alarms with various notifica-
tion hooks.

This example illustrates the versatility of modern products compared to the
older ones. In this case Grafana could use Graphite6 as its’ data source and
the creators of InfluxDB have introduced their own take on the metric collection

3collecting data, transporting them to a database for archiving, serving them to the user
4Based on the RRDTool by Tobias Oetiker https://oss.oetiker.ch/rrdtool/index.en.

html. RRDTool is used by all the previously mentioned monitoring tools as well.
5Monitoring data are single values acquired in discreet times (usually evenly spaced), thus

being a prime example of a time series data stream.
6graphiteapp.org

6

https://oss.oetiker.ch/rrdtool/index.en.html
https://oss.oetiker.ch/rrdtool/index.en.html
graphiteapp.org

problem. But system administrators cannot always choose, which specific solu-
tion to deploy so by employing this kind of modularity the developers secure a
higher chance of their product being used. Note however, that although this ex-
ample mentions state-of-the-art products, there is no support for advanced data
analytics.

1.2.2 Elastic Stack
The Elastic Stack (formerly ELK Stack) is a set of open-source tools for gathering,
storing and visualizing data mainly from text files [10]. Combining Elasticsearch
— a real-time distributed open-source analytics and search engine [11] — with two
other stand-alone projects (Logstash for collecting raw log data and transforming
it in Elasticsearch compatible JSON documents and Kibana for visualization)
created a widely used centralized logging solution. The components are again
changeable. For example Grafana supports Elasticsearch as a data back-end, so
it could be used instead of Kibana.

Collecting logs is substantially different from numeric metrics in several ways:

• Numerical metrics just need to be read and collected, log lines on top of that
have to be parsed into multiple fields containing meaningful information.
This process has to be repeated for each application (sometimes logging
schemes can change even with different versions of the same application),
since the structure of the log line and the relevant parts vary.

• Log lines in general have variable length, which may pose a challenge for
transport and especially storage, whereas numerical metrics have a fixed
scalar type.

• Due to log lines being a more complex object, the data extracted might
be visualized and explored in more ways. Spanning from simple counting
the number or frequency of a certain type of log line through graphing a
numerical metric extracted from the log to exploring the raw messages, the
dashboard in a log consuming application has fulfill all these tasks.

The Elastic Stack is mentioned to illustrate the variety in monitoring data.
The operators might need to collect not only hardware metrics, but analyze log
lines as well in order to spot as many problems as possible, although that requires
expert knowledge and lots of time.

1.2.3 MONIT
One of the most important scientific communities, for which handling and pro-
cessing huge amounts of data became essential, is the High Energy Physics (HEP)
community of the experiments at the Large Hadron Collider (LHC) at CERN7.
The volumes of collected data are larger than any single computing center within
the LHC collaboration could handle, so the concept of distributed data manage-
ment was conceived. For almost two decades now, the WLCG — an international

7European Organization for Nuclear Research (name derived from Conseil Européen pour
la Recherche Nucléaire) — European research organization that operates the largest particle
physics laboratory in the world.

7

collaborative grid-based computer network [12] — has been essential to CERNs’
scientific endeavour.

Recently, it was agreed to merge WLCG monitoring services with the internal
CERN IT data centre monitoring, which were both using similar technologies but
split for historical reasons. This effort resulted in the development of a Unified
Monitoring Architecture (UMA) [13], which after deployment became known as
MONIT. The goal was to create a modern monitoring system with many various
data inputs capable of handling large data throughput, enabling the operators
and experiment experts to analyze the data streams in real time as well as storing
all of it for later visualization and analysis. The overall architecture can be seen in
Figure 1.1, all the major components will be introduced in the following section.

Data Sources create an interface between all the various monitored environ-
ments. Most of those are controlled by the experiment collaborations and
have different ways to publish their data. Several standard methods of data
collection were identified and implemented including direct database con-
nection, using Apache ActiveMQ8, accepting logs or reading a HTTP feed.
The local CERN computing center hardware metrics are gathered using
CollectD. Other metrics include transfer monitoring, grid job monitoring,
network monitoring and others. All the data is channeled through a set of
nodes running Apache Flume9.

Transport buffer with a retention period of 72 hours is set up using a cluster of
Apache Kafka nodes [14]. The data arrive in a predefined scheme from the
Flume sinks and are available for low-latency real-time operations. There
are 20 Kafka nodes used for production data and a smaller cluster for QA,
all of them are virtual machines (VMs) hosted on the CERN IT Open-
Stack10. In MONIT each partition has 3 replicas for fault tolerance and
load balancing.

Processing of the data is done using a Apache Spark cluster [15]. Data could
be either read as a stream directly from Kafka or as batches from perma-

8activemq.apache.org
9flume.apache.org

10www.openstack.org

Figure 1.1: MONIT architecture

8

activemq.apache.org
www.openstack.org

nent storage. Streaming jobs are used for data enrichment (e.g. adding
site name and country to records based on producers’ hostname) or aggre-
gation (averaging multiple metrics over a time bin or combining multiple
metrics from the same source into one record). Batch processing is used for
compressing previously saved data, creating high-level reports or advanced
offline data analytics.

Storage is divided based on the supported time window. For short term storage
and log data exploration, Elasticsearch is used. Time series data is stored
in InfluxDB for medium-term period in case of raw data and long-term
for aggregated data based on the down-sampling policies. For long-term
storage MONIT shares a HDFS cluster with other CERN IT projects.

Access is provided by multiple web applications. Grafana is used for visualizing
mainly time-series data from both Elasticsearch and InfluxDB. Kibana is
also used as an alternative interface for data stored in Elasticsearch. For
offline and more advanced analytics, data cached in Kafka as well as those
stored in all of the storage backends can be accessed by SWAN — a platform
for interactive data analysis based on the Jupyter11 technology [16] with
access to the Spark cluster for heavier workloads.

MONIT is the most complex of all the systems described, mainly because the
democratic nature of the scientific domain spawns many different solutions to the
problems and MONIT has to accommodate all of them. Advanced data analytics
are not built in, but users can leverage the opportunities the Spark cluster and
SWAN provide as MONIT is more of a platform than a final solution.

1.3 Monitoring Data Analysis Works
Neither the out-of-the-box monitoring solutions, nor the modular ones provide a
truly advanced data analytics tool. However many researchers have experimented
with such a task usually creating an purpose built tool solely for the sake of the
study. This section will provide a brief overview of some of those works focusing
on machine learning applications.

1.3.1 Intrusion detection
The field of cyber security has seen a wide adoption of machine learning methods,
mainly for the specific task of intrusion detection12. Although not entirely the
same task as general monitoring anomaly detection, the similarities in the nature
of its data make it a relevant comparison.

Surveys show that merely any applicable method has already been investi-
gated [17], although others argue that identifying network intrusion is a particu-
larly difficult problem for machine learning [18]. Recently the works have mainly
been focusing on complex artificial neural network architectures [19], which thrive
even in environments with extremely rare anomalies and difficult input data.

11jupyter.org
12An intrusion detection system discovers and identifies unauthorized use, alteration, or de-

struction of information systems

9

jupyter.org

1.3.2 Failure prediction
Some works have taken on the task of failure prediction, a significant advancement
of failure recognition. Failure prediction is the problem of assessing whether the
current situation bears the risk of the system being unable to deliver its’ expected
service. This is a key step in designing services providing high availability. As
with cyber security many approaches have been tried and tested [20], but given
the advanced difficulty of the task all the works make use of all the available data
including application metrics or logs [21] making them very application specific.

1.3.3 Black-box methods
Finally there is a number of works exploring data analysis on application oblivious
metrics, which are arguably closest to the main subject of this work. These can
be either OS metrics or metrics from a middleware on which the application itself
is based as is the case of Pinpoint [22]. Pinpoint is an application-level failure
detection system using both peer similarity and historical similarity to detect
anomalies. It tracks the path requests travel through an application studying
the interactions of components with the rest of the system. It is constrained
to several middlewares used for building component based internet applications,
however it is independent on the specific application. The work shows interesting
results detecting high level failures with high speed, it also notes the challenges
when working with application metrics.

Being constrained to system metrics only is a notable limitation, so works in
this class usually focus on a single use-case. As is the case of Ganesha: Black-box
fault diagnosis for MapReduce systems [23]. Ganesha uses peer similarity based
on clustering to determine an erratic node. Data used for training were obtained
in a experimental environment, however both the artificially injected faults and
one of the three workloads were chosen to well represent a real-world scenario.
The work showed that a black-box approach is viable when detecting faults with
static and asymmetric manifestation13.

1.4 Time series analysis
Because server monitoring data is a time series type dataset, other time series
analysis works might also be of interest, although related less closely then works
specifically analyzing computer performance. The recent trends have been to
replace traditional methods with complex Neural Network models.

The Long Short Term Memory networks have been successfully used for
anomaly detection on real world datasets [24], as a core model of a setup similar
to the system described by this work. But even more elaborate models, leverag-
ing convolutional layers as well as LSTMs have been explored. The MSCRED
Framework (Multi-Scale Con-volutional Recurrent Encoder-Decode) introduces
a complex system combining a convolutional encoder-decoder with LSTM net-
works [25]. That is then evaluated on a synthetic and real world dataset.

13Where the faulty node behaves differently from the others and the fault is not moving
across the cluster

10

2. Problem statement and
Approach
In this chapter first some essential definitions are provided, then the core hy-
potheses and goals as well as non-goals are stated. Let us just remind that the
relevant results are discussed later in Chapter 5.

2.1 Definitions
This work is centered on detecting anomalous behavior of servers. However not
any anomaly is interesting enough to be worth reporting. To better clarify the
goals of this work, some of the basic terms are defined. These terms are widely
used in works related to computer system reliability and dependability, but not
always consistently. The definition used here is hopefully consistent with the
prevailing understanding [26].

Service failure or failure for short is an event that occurs when the delivered
service deviates from expectations. An alternative equivalent definition is
that a failure is a misbehavior that can be observed by the user.

Error is a situation, where the systems’ state deviates from the correct state.
An error, that has not yet reached the services interface (has not yet caused
a failure) can be detected by the system administrator via monitoring.

Fault is a root cause of an error.

Fault Undetected Error Detected Error

Failure

Activation Detection

Effect

Effect

Figure 2.1: Relations between faults, errors and failures.

2.2 Hypotheses
The core hypotheses that this work is trying to prove states, that given a history
of a distributed application workload and a cluster of servers running said ap-
plication, it is possible to detect an erratic server by analyzing only the os-level
metric data.

11

2.3 Goals
The goals of this work are to:

1. Gather a dataset. Create an application consuming metrics commonly avail-
able in computing centers and pre-processing them for usage as input for a
machine learning module. Specifically the metrics will be handled on the
CERN MONIT infrastructure, as CERNs’ computing center is an example
of a traditional data center.

2. Confirm core hypothesis. Train a machine learning model on the gathered
dateset that is able to recognize an erratic node. The process has to be
online (the model has to work on a live stream of data) so that the operator
can take action before the error causes a failure. Investigate the universal-
ness of such model.

2.4 Non-goals
While the error detection has to be done on live data, this does not mean that the
anomaly has to be caught the moment it appears. The aim is to provide a useful
tool for the system administrator of the application so that detectable errors are
reported before they cause failures. Many applications have built in redundancy
to prevent failures caused by a single node error, however combination of several
minor errors might cause problems while being difficult to detect by ordinary
oversight, making a automatic error detection tool beneficial for the operator.

This work is aimed on proving the hypothesis, among its’ goals is not devel-
oping a wholesome production ready application.

12

3. Data Gathering and
Aggregating
In this chapter, the process of acquiring the dataset is described. The dataset
required for accomplishing this works goals has to have the following properties:

• represent recorded OS metrics from a cluster of equal servers running a load
balanced distributed application for a time period long enough to enable
learning of an advanced model,

• present the metrics in a way that they might be correlated for a particular
server or subset of servers,

• capture numerous anomalies so the detection mechanism can be thoroughly
tested.

By the time this work started, no such dataset was available. The decision
was made to record our own.

3.1 Recording OS Metrics using MONIT
All of the conditions mentioned above could be fulfilled using the data in CERNs’
MONIT infrastructure (described in Section 1.2.3). MONIT offers OS metrics via
its collectd stream [7]. Each collectd daemon submits the metrics to the stream
individually, not at the same time and in various intervals. Joining the metrics at
any single point in time is therefore unfeasible. Instead each metric is averaged
on its own on a common time window and the complete snapshot of the servers
state is joined afterwards. See Appendix C for the data schemes of all the relevant
kafka topics.

Initially 10 OS metrics were selected from the collectd data streams. These
include cpu-idle and memory-used for monitoring the overall cpu and memory
usage respectively; running-processes and shortterm-load for process status mon-
itoring; connections-established, bytes-sent and bytes-received for network mon-
itoring; cpu-iowait, disk-write, disk-read for I/O monitoring. Later, after the
system was setup, the whole set of available OS metrics started being saved (see
Table 3.1).

The longest metric readout interval among these metrics is 5 minutes, so the
averaging time window length was set as 20 minutes. This guarantees that in
each time window we get at least 4 samples of each metric, providing a simple
smoothing procedure. It is also still a reasonable delay for the anomaly detection
this work is trying to achieve, since it is aiming for detecting an error before it
causes a failure rather than real-time performance.

Two streaming Spark jobs implement the operations described (Figure 3.1).
The first one reads all the collectd data in the MONIT infrastructure and averages
only selected metrics for four clusters chosen because of their potential to be
interesting for our case. The processed data are then written into new topics
(one per metric type). Needing to read the whole collectd stream means the job

13

Name Original Note
bytes received True bytes received on the network interface
bytes sent True bytes sent on the network interface
connections established True established tcp connections
connections listen False local sockets in listening state
connections synrcv False tcp connections in a establishing state
connections synsent False tcp connections in a establishing state
connections closed False tcp connections in closed state
connections closewait False tcp connections to be closed
connections closing False tcp connections in a closing state
connections finwait1 False tcp connections in a closing state
connections finwait2 False tcp connections in a closing state
connections lastack False tcp connections in a closing state
connections timewait False tcp connections in a closing state
cpu idle True percentage of cpu idle
cpu interrupt False perc. cpu used for HW interrupts
cpu iowait True perc. cpu used for I/O operations
cpu nice False perc. cpu used by tasks with nice > 0
cpu softirq False perc. cpu used for SW interrupts
cpu steal False perc. cpu stolen by the hypervisor
cpu system False perc. cpu used by system tasks
cpu user False perc. cpu used by user tasks
disk read True bytes read from the main disk
disk write True bytes written from the main disk
load True short-term load
used memory True bytes of used memory
free memory False bytes of free memory
cached memory False bytes of memory used for I/O cache
slabrecl memory False bytes of SLAB1 reclaimable memory
slabunrecl memory False bytes of SLAB un-reclaimable memory
paging processes False number of paging processes
running processes True number of running processes
blocked processes False number of blocked processes
sleeping processes False number of sleeping processes
stopped processes False number of stopped processes
zombie processes False number of zombie processes

Table 3.1: All the collected collectd metrics. The second column notes, whether
the metric was used in the dataset before the metric number expansion.
1SLAB is a memory management mechanism for increasing efficiency of memory
allocation and reuse by the Linux kernel

14

Other metric streams
Collectd raw metrics

Aggregating Joining

Aggregated collectd metrics
Snapshots HDFS

JobJob

Kafka

Spark

Figure 3.1: Scheme of the data collecting pipeline inside the MONIT infras-
tructure. Note that only parts relevant for this work are depicted. Connection
between Kafka (blue) and Spark (orange) is handled by Sparks’ Kafka library.
Filling Kafka and writting into HDFS is done by Flume agents.

has to run in the Spark cluster mode rather than on a single server: the resource
requirements for fetching, decompressing and reading 13MB/s are 25 CPU cores
and over 111GB of memory. Since the whole feed is already being consumed,
adding new metrics or clusters to the aggregated stream is now only a matter of
re-configuring the job, the resource requirements would not grow significantly.

The second Spark job reads the processed data and joins them on hostname
and data aggregation window creating a full status snapshot of the host for the
specific time. It then again writes them into a separate topic. The joined data is
then written by a Flume agent to HDFS for later analyses.

3.2 Creating anomalies
Gathering data from a live setup would not be sufficient for testing an anomaly
detection process. Anomalies are not common enough in ordinary data, therefore
artificial anomalies were crafted and injected into the data. Alternating the al-
ready collected metrics might not produce plausible results, so creating an error
on the server itself, while data was being collected and the rest of the cluster ran
a normal workload, was our only option. Several classes of errors were thought
of and implemented:

• Base line anomaly — the main application is shut down on one of the nodes
in the cluster.

• Memory-leak type — the memory usage gradually increases up until a point
where the OOM killer1 engages. In this case the memory allocation is
stopped before the OOM killer intervenes, to avoid the situation when the
main application process is killed.

1Out Of Memory Killer (OOM) is a process that the Linux kernel employs when the system
is critically low on memory. The kernel attempts to recover memory by terminating programs
so that the system can continue running

15

• CPU over-utilization — the CPU usage increases conflicting with the main
application possibly rendering it un-operationable.

• Combined — both cpu and memory usage increases. Such an anomaly
might indicate a rogue program being launched, or defective load balancing
in the main application (the anomalous node is overloaded).

All of the anomalies were injected one or two per day on one of the nodes.
The initial goal was to collect 10 instances of each anomaly. However because
the available cluster was dedicated to testing configuration before deploying in
production, time sequences, when the application was running ordinarily were
sparse. Moreover creating anomalies caused the service to fail (although that was
not the aim at the time), so several time periods have to be discarded from the
usable dataset. Table 3.2 presents the final number of collected anomalies per
type. Anomalies are spread over 19 days and the dataset also includes five 3 day
sequences of stable production for algorithm training.

anomaly type count
service stop 6
memory overuse 2
cpu overuse 8
combined cpu and memory overuse 10

Table 3.2: Final anomaly count per type.

3.3 Initial Data Exploration
To assess whether any knowledge mining could be successful, data from one of
the anomaly days were selected and several clustering algorithms were applied.
Because all the data described servers running one distributed application, the
opportunity of using a simple clustering algorithm for anomaly detection had to
be explored. The clustering algorithms output however had to be interpreted
differently than when used for clustering itself. For the k-means [27] algorithm,
the distance of the examined data point from the center of the cluster it was
assigned to had to be measured. If the distance exceeds a limit, the point is
marked as an anomaly. The mixture of gaussians [28] algorithm enriches the
clustering classification with a assignment probability of the data point for each
cluster.

The number of clusters was set to two, however, we were expecting all the
data points should form only one cluster with several outliers possibly scattered
around. In practice, many miss-classified anomalies were observed when applying
this approach to a day with stable service (see Figure 3.2a). Conversely, on a day
where one of the nodes actually displayed some erratic behavior, its’ data formed
a separate cluster. Therefore it could not be identified using the approaches
described above (see Figure 3.2b). The results however hinted, that there is some
knowledge available for extraction hidden in the data.

16

1st principal component

2nd
pr

in
ci

pa
lc

om
po

ne
nt

(a) Stable day

1st principal component

2nd
pr

in
ci

pa
lc

om
po

ne
nt

(b) Day with an erratic node

Figure 3.2: Result of a run of the K-Means clustering algorithm on PCA trans-
formed data. Colors correspond to the clustering classification.

These initial results were presented2 on the Computing in High Energy Physics
2018 conference in track Networks and facilities and were published in the con-
ference proceedings [29].

kk

2Contribution details: indico.cern.ch/event/587955/contributions/2937940/

17

4. Anomaly Detection Module
After the dataset has been described, this chapter will introduce a variety of
approaches for detecting anomalies and the next chapter will evaluate their per-
formance. Keeping the work as universal as possible we decided not to use super-
vised classification on labeled anomalies, which might constraint the performance
to our artificial errors. Instead a selection of unsupervised outlier detection al-
gorithms and supervised regressors was explored. Note that none of the core
algorithms was implemented in this work, all of the models, classifiers and re-
gressors are available in their respective libraries. This also divides the models in
two main categories:

• algorithms available in the Spark.ML library [30],

• algorithms available in other Python libraries.

Usage of the framework in which the data collection module is written and
which the MONIT infrastructure supports well would be a great convenience.
However Sparks’ in-house machine learning capabilities are somewhat limited, so
other models, which were not natively provided, were investigated as well.

4.1 Data Pre-processing
The raw captured data consist of 10 and later 35 highly varied metrics. To
boost the algorithms performance, all the input data are scaled to unit varia-
tion. However 10 and especially 35 dimensions could be too much for some of
the algorithms, so the Principle Component Analysis was employed [31]. Many
components appeared to be highly correlated as expected1. The performance
gain with certain algorithms was clear, although performed without the knowl-
edge of the target variable (flagged anomalies) since that would not be available
in production settings.

The number of dimensions to be used after the PCA transformation based
on the variance explained by respective components was selected to be 3 or 5 for
some algorithms (see Figure 4.1).

4.2 Unsupervised Learning
Anomaly detection can be approached with unsupervised learning as a problem
of characterizing a dataset based solely on the regular data points. New data
are then determined to be anomalies based on how well they would fit the learnt
characterization. The input data points in our case would be simply the aggre-
gated metrics per time window per hostname. When learnt on a certain time
period, the algorithm will then mark the abnormal data points, thus indicating

1It was clear that variables such as running-processes and shortterm-load will be corre-
lated since they describe a very similar property only in different ways. The decision was made
to collect as many metrics as possible and let pre-processing algorithms such as PCA reduce the
dimensionality rather than manually pre-select a set of metrics based on personal experience.

18

Principal component

Ex
pl

ai
ne

d
va

ria
nc

e

(a) Decomposition for the 10 raw metrics.

Principal component

Ex
pl

ai
ne

d
va

ria
nc

e

(b) Decomposition for the 35 raw metrics.

Figure 4.1: Proportions of variance explained by each principal component.

the anomalous server and time the anomaly might have occurred. Because the
Spark.ML library does not offer any suitable unsupervised learning algorithms,
two algorithms from the popular Scikit-learn library [32].

The One Class Support Vector Machine [33] is a novelty detection algo-
rithm based on the ubiquitous SVM classifier. The one class variant, instead of
characterizing a hyper-plane separating two classes, learns a frontier surrounding
the ordinary data. New data are then labeled based on their location relative to
that frontier.

The Isolation Forest [34] is an attempt to use the random forest approach
for outlier detection. The algorithm is based on partitioning the space until it
isolates all the input data points. Anomalies are then those samples, which are
the easiest to isolate — require the least partitions to separate from the rest of
the data points.

4.3 Supervised Regression
Although using supervised classification on labeled anomalies was agreed not to
be explored in this work, supervised learning could be employed in a different
way. With time series data, a regression task is hidden in predicting the next

19

data point based on one or several historic ones.
To represent the relevant history, input data are several metric vectors con-

catenated together, each representing a server status snapshot in time. The
output would then be vector describing the next status snapshot2. The dimen-
sionality of such input data can grow dramatically when trying to capture longer
periods of time or without using any additional dimensionality reduction tech-
niques. With this in mind, the decision was made to set the number of historical
snapshots n to 4. With the 20 minute time window that gives the algorithm
knowledge about a 80 minute history of the server in question.

Xt = (x1
t , x2

t , x3
t , ...xN

t)
f(Xt−n, Xt−(n−1), ...Xt−1) = X̃t

The number of collected metrics N was initially 10 and later grew to 35,
which means the input vector representing 80 minutes history would be 40 and
140 items respectively. This might pose a challenge not only for the algorithms
themselves, as the size of the learning set might not be big enough to reliably
train with such large number of input variables, but also the interpretation of
so many results would be complicated. It was therefore decided to use PCA for
dimensionality reduction. Information about the rest of the cluster is added to
each snapshot by joining it with per metric cluster averages, thus doubling the
input vector length.

After the algorithm makes its’ prediction for the next state and the true state
comes in, we can consider the distance of the prediction and the truth. Extracting
anomalies from prediction errors is yet another task. When testing the algorithms
on a set of data from one day, we can calculate the mean and standard deviation
of the errors and every prediction with error larger than the mean error plus three
standard deviations can be considered a predicted anomaly.

error =
√

(X̃t −Xt)2

4.3.1 Non-Spark Model
In classical time series analysis, primarily in economics, the ARIMAX3 class of
models is a very popular one. Extending the basic combination of an auto re-
gressive and a moving average model (ARMA) by adding a differencing step to
handle possible non-stationarity and an ability to consult other variables than
the predicted one makes it an interesting possible fit for our needs.

For working with a large number of varied time series automatic selection of
hyperparameters for the model is a major challenge. An implementation of a
informed grid search of the parameter space is luckily provided by the pmdarima
library [35], however all the analytics using this class of models had to be done
outside the Spark framework.

2All of the used classifiers support only a one dimensional output, therefore each data di-
mension had its’ own prediction model

3AutoRegressive Integrated Moving Average with eXogeneous input

20

4.3.2 Spark Models
The following models will all be implemented in Spark.ML making their appli-
cation on the acquired dataset and possible future conversion to a production
application uncomplicated.

As a baseline to be able to benchmark the performance of more complex
algorithms, we use the simplest future prediction possible: repeating the last seen
state. Because the nature of our data is mostly linear and the load balancing of
the investigated application works rather well, this approach yielded good base
results.

The Spark machine learning library offers a decent selection of models, from
which we chose 2 very different ones. For initial code development and testing
the Linear Regression model was used for its’ simplicity and speed. Then the
same approach was applied to train a Random Forest model [36], which could
model more elaborate functions. Hyper parameters for both models were selected
using a grid search with 3-fold cross validation as the evaluating technique. The
evaluation metric for the cross validation was root mean squared error, a standard
regression evaluation metric.

21

5. Model Evaluation
In this chapter, we explain the evaluation of the algorithms introduced in the pre-
vious chapter. The comparison needs to be done among diverse approaches, so
although the standard evaluation metrics will be mentioned when assessing their
respective types of algorithms, the paramount question is, whether the result-
ing system is able to reliably detect the artificial anomalies without many false
positives. We will be using the standard precision and recall metrics, defined as
follows.

predicted actual
anomaly normal

anomaly true positive false positive
normal false negative true negative

precision = true positives
positives

recall = true positives
anomaly count

5.1 Unsupervised Learning
With the novelty and outlier detection algorithms the process will be simple.
Their output is directly a anomaly classification, so the sole procedure is to com-
pare the output with the known anomalies. The hyperparameters for both al-
gorithms were chosen using 5-fold cross validation on one random day with an
anomaly and then fixed for the rest of the anomaly days.

From Table 5.1 it is clear, that the Isolation Forest algorithm yields better
results than the One Class SVN. PCA pre-processing helps the OC-SVN, which is

model precision recall
I-forest-nopca 0.79 0.37
I-forest-pca5 0.75 0.32
I-forest-pca3 0.72 0.32
OC-SVN-nopca 0.29 0.16
OC-SVN-pca5 0.43 0.19
OC-SVN-pca3 0.40 0.21

Table 5.1: Mean precision and recall for the unsupervised algorithms. Suffix
-pca3 means the algorithms’ input data were pre-processed by PCA and the first
three components were used, the -pca5 suffix denotes an algorithm trained on
the first 5 components of the PCA decomposition and the -nopca suffix denotes
an algorithm trained and applied on data without any PCA pre-processing.

22

more sensitive to high dimensionality, but it is not helpful in case of the Isolation
Forest. When inspecting the performance on specific instances of anomalies,
the performance varies dramatically (see Table 5.2 and Table 5.3 for shortened
results or Appendix B for full results). Note that the days when the algorithms
are performing the worst are included in the portion of the data used to set the
hyper parameters. Performance variations are also not linked to the anomaly
types.

date precision recall
2019/11/27 1 0 0.67
2019/11/30 1 0 0.58
2019/02/11 0.25 0.17
2019/02/09 0.22 0.17

Table 5.2: The two best and worst days with respect to recall with anomalies on
which the Isolation Forest algorithm without PCA pre-processing was applied

date precision recall
2019/02/11 0.50 0.38
2019/02/19 0.57 0.31
2019/12/18 0.43 0.12
2019/02/22 0.33 0 8

Table 5.3: The two best and worst days with respect to recall with anomalies on
which the OC-SVN algorithm on the first five components of PCA.

5.2 Supervised learning
As discussed in the previous chapter, the regression algorithms output the next
server state based on historic ones (see Section 4.3). One of the standard regres-
sion metrics is the root mean square error (RMSE), see Table 5.4 for results on
data with PCA reduced dimensions. These results suggest, that the BASELINE
model would perform the best of all inspected.

In case of using the regression model for anomaly detection, the overall re-
gression metric score arguably is not the main concern, the anomalousness of the

model error0 error1 error2
BASELINE 0.53 0.42 0.63
ARIMA 5.40 5.30 1.90
lr 10.9 4.13 9.1
rf 8.86 16 6 12.28

Table 5.4: Mean errors per output column for the regression algorithms. LR
represents Linear regression and RF the Random Forest regressor.

23

error is. In other words the error overall can be high while the error at the time of
the anomaly is noticeably higher. What is going to be in the center of our interest
therefore is the progression of the error. That can however differ greatly with the
type of anomaly, with the algorithm used and with the current conditions of the
cluster.

First, lets inspect the BASELINE algorithm. Its’ errors are quite low, but
then spike high for severe anomalies such as stopping the service (see Figure 5.1),
but can also be rather unstable on other days (see Figure 5.2). The instability
can be seen in other algorithms as well depending on the specific time period.
Remember that the data are gathered from a live installation and apart from the
artificial anomalies, no other changes were made including 12 to smoothen the raw
data. Also note that both the beginning and the end of the anomaly are denoted
by a spike in the error. This can be explained by the applications’ attempts to
reestablish stable operations by re-synchronizing the anomalous server with the
rest of the cluster once the anomaly ends. This manifests itself by higher cpu
and especially network usage. The regressor however has no information about
the anomaly itself nor about the return to normal operations. The spike at the
anomaly end is therefore expected. That is especially true for the BASELINE
algorithm, since it has on information about the rest of the cluster, but we can
observe similar behavior from the other models as well.

Time

Er
ro

r

Figure 5.1: Prediction error in the first and second dimension with PCA of the
BASELINE algorithm during a day with a service stop anomaly. Top chart is
for the anomalous host, bottom for a random one. The anomaly started at 12:00
and ended at 16:00

24

Time

Er
ro

r

Figure 5.2: Prediction error in the first and second dimension with PCA of the
BASELINE algorithm during a day with a cpu overuse anomaly. Top chart is
for the anomalous host, bottom for a random one. There were two anomalies
inserted that day: 10:00-14:00 and 18:00-22:00.

Similar behavior is captured by Figure 5.3, which depicts the results for the
Random Forest algorithm. The start of the anomaly can again be spotted as a
clear bump, but even more distinct is the spike corresponding with the end of the
anomaly.

Time

Er
ro

r

Figure 5.3: Prediction error in the first and second dimension with PCA of the
Random Forest algorithm during a day with a service stop anomaly. The anomaly
started at 12:00 and ended at 16:00.

25

5.2.1 Extracting Anomaly Information from Prediction
Error

Applying the regression model is only the first step in the anomaly detection
engine. Next is to extract the anomalies from the prediction errors. If we assume
the errors to be normally distributed, we can then calculate the mean and stan-
dard deviation of the prediction error and all the predictions with error further
from the mean than 3 ∗ std dev can be treated as an anomaly prediction.

is anomaly(n) =

⎧⎨⎩True if error(n) > mean error + 3 ∗ std dev

False otherwise

After applying this three-sigma rule on the data shown in Figure 5.3, specif-
ically to error in the first dimension, we can see that both the beginning and
the end are marked as an anomaly (see Table 5.5). Also some other servers sta-
tuses from the same time as the anomaly end are marked as well. Note that the
standard classification metrics do not score this result particularly well with a
precision of 0.71 and recall of 0.38.

pred time hostname anomaly
2019-02-09 12:00:00 anomalous.cern.ch True
2019-02-09 12:20:00 anomalous.cern.ch True
2019-02-09 12:40:00 anomalous.cern.ch True
2019-02-09 13:00:00 anomalous.cern.ch True
2019-02-09 16:00:00 host01.cern.ch False
2019-02-09 16:00:00 host09.cern.ch False
2019-02-09 16:00:00 anomalous.cern.ch True

Table 5.5: All anomalies marked by applying the three-sigma rule to the first
dimension error of the Random Forest regressor on a day with a service stop
anomaly. The anomaly started at 12:00 and ended at 16:00.

For the anomaly system, dealing with the false positives, although they are
understandable, poses a critical challenge. In order to be of any value to the
system administrator, it needs to separate the actual anomaly, especially its’
start, from its’ side effects. False positive notifications have the potential to
clutter the operators’ message feed and make the whole system more of a burden
than an asset. For completeness sake Table 5.6 presents the average recall and
precision per model and error column on the PCA pre-processed data.

5.2.2 Filtering Anomaly Notification feed
To improve the unsatisfactory results, a simple filtering mechanism was conceived,
mainly with the aim of filtering false positives while maintaining the recall. Ta-
ble 5.5 would suggest, that if there indeed is an anomaly, there should be more
than one high errors in a row. Scanning for two notifications in a row lowered the
number of notifications significantly, but most importantly filtered all of the false
positives. Unfortunately recall also dropped. To counter act that, we decided to

26

model error0 error1 error2 sum error avg error
BASELINE 0.14 0.21 0.11 0.18 0.18
ARIMA 0.14 0.38 0.18 0.25 0.25
lr 0.14 0.24 0.15 0.20 0.20
rf 0.28 0.29 0.16 0.38 0.38

model error0 error1 error2 sum error avg error
BASELINE 0.28 0.63 0.29 0.53 0.53
ARIMA 0.12 0.33 0.21 0.27 0.27
lr 0.43 0.71 0.54 0.71 0.71
rf 0.37 0.72 0.48 0.81 0.81

Table 5.6: Recall (top) and precision (bottom) for the regression models.
Anomaly classifications are received by a prediction error being too high, thus
each table column describes classification retrieved by using predictions for sep-
arate input dimensions. Then a sum and average are computed per data sample
and the same anomaly classification mechanism is deployed. The last two columns
describe the recall received from such aggregated errors.

lower the 3∗std dev threshold for an error to become an anomaly to only a single
standard deviation tolerance. With that, we still received no false positives with
a significant improvement of the recall. The whole process of producing anomaly
notification is described in high level in Algorithm 1.

Algorithm 1 Create Anomaly Notifications Using a Regression Model on Offline
Data

anomaly free data ←− read from database()
model ←− train model(anomaly free data)
input data ←− read from database()
processed data ←− model.apply(input data)
prediction errors ←− calculate prediction errors(processed data)
anomaly candidates ←− filter(filtering rule, prediction errors)
anomaly notifications ←− find consecutive candidates(anomaly candidates)
return anomaly notifications

Table 5.7 illustrates the performance of the algorithms with the notification
filtering heuristic in place. To enrich the results, the values in the table are the
number of time windows of lag the algorithm needed to detect the anomaly (0
means detected directly at start, NaN represents an anomaly without detection).
Since all the anomalies are 4 hours or 12 time windows long, value of 12 in the
table means the algorithm detected only the end of the anomaly, which essentially
means a failure. The same notification filtering heuristic can be also applied to
the unsupervised algorithms input (see Table B.7 in Appendix B), however the
results are inferior to those of the supervised learning algorithms.

27

anomaly id lr rf BASELINE ARIMA rf-nopca
0 0 0 12 0 0
1 0 0 12 0 0
2 0 0 12 0 0
3 0 NaN 12 4 0
4 12 NaN 12 0 0
5 12 NaN 12 7 0
6 0 NaN 12 4 0
7 1 NaN 0 NaN NaN
8 2 NaN NaN 10 9
9 NaN NaN NaN NaN NaN
10 NaN 0 NaN NaN 0
11 NaN 3 NaN NaN 0
12 12 3 1 NaN NaN
13 NaN 2 0 NaN NaN
14 NaN NaN NaN NaN NaN
15 NaN 0 NaN NaN NaN
16 NaN 3 NaN NaN 0
17 0 0 0 NaN 6
18 0 0 0 8 7
19 0 0 0 NaN 7
20 0 0 0 NaN 6
21 0 0 0 6 7
22 0 0 0 6 6
23 0 0 0 5 6
24 0 0 0 4 7
25 12 0 0 2 6
26 12 1 0 3 6

Table 5.7: Anomaly detection with the notifications filtering heuristic. Values
are the lag of time windows the algorithm needed to detect the anomaly, NaN is
a non-detection.

Note that the success rate is not even among the anomalies. Explanation can
be found in the anomaly type:

• ids 0-2 are service stop anomalies in a very stable service period,

• ids 3-6 are service stop anomalies with a virtualization host problem affect-
ing the service stability,

• ids 7,8 are memory overuse anomalies,

• ids 9-16 are cpu overuse anomalies,

• ids 17-26 are combined cpu and memory overuse anomalies.

With a recall of 0.7 and precision of 1, the Random Forest based system gives
the best results of all the tested models with input composed of the first three

28

principal components of the PCA. Those results however can be improved still,
be leaving out the PCA based dimensionality reduction.

As was the case with the unsupervised algorithms, some regression algorithms
do not perform best with a high number of input dimensions. The Random Forest
regressor model, similarly to the Isolation Forest model, usually does not suffer
by the curse of high dimensionality. In our case however, not reducing the input
dimensionality implies also many more dimensions to predict to obtain prediction
error. Moreover predicting many dimensions spawned the need for many regres-
sion models, because regression algorithms tend to have only one dimensional
output. This enforced compromising on the training procedure. Specifically,
unlike in the case of the three dimensional space after applying PCA, the hy-
perparameters for the regressors could not be selected by cross-validation each
time a model is trained on new data, as the computation power required by such
task would be excessive. Instead the hyperparameters were fixed after running
cross-validation once on a single set of training data1.

The improvement in the recall can best be examined by comparing to the pre-
viously best algorithm (see Table 5.7), precision was again 1 – no false positives.
Note the higher score for anomalies 17-26, the combined over-use anomalies. As
was the case for the rest of the over-use anomalies, the over-usage was scaled
gradually, hence the late detection.

model recall
rf-nopca 0.78
rf 0.70
lr 0.56
ARIMA 0.56
BASELINE 0.48

Table 5.8: Summary results for the whole system with notification filtering and
1 ∗ std dev as the anomaly classification prediction error threshold. Notifying on
the anomaly at the time of its’ end is not counted here as valid notification.

When evaluating the error per dimension, it is clear that prediction of some
of the metrics brought little benefit in comparison to others (see Table 5.9 for
full results.). Those results however may vary with the specific application and
artificial anomalies.

In general, anomalies affecting only one of the metrics are more challenging
than the more complex ones. Summarizing the performance of the whole system
with the notification filtering heuristic is Table 5.8.

1Hyperparameters were set to maxBins = 50, maxDepth = 3, numTrees=333

29

model rf-nopca precision rf-nopca recall
cpu idle 1.00 0.85
running processes 1.00 0.73
load 0.99 0.68
cpu system 0.64 0.46
cached memory 0.63 0.44
avg error 0.64 0.39
sum error 0.64 0.39
cpu softirq 0.48 0.27
connections lastack 0.28 0.27
connections listen 0.28 0.27
connections finwait2 0.34 0.26
bytes received 0.31 0.21
connections established 0.24 0.18
blocked processes 0.28 0.14
cpu user 0.32 0.13
sleeping processes 0.36 0.13
slabrecl memory 0.24 0.12
slabunrecl memory 0.22 0.11
connections closed 0.44 0.09
bytes sent 0.09 0.07
connections closing 0.37 0.06
zombie processes 0.13 0.03
disk read 0.05 0.02
free memory 0.02 0.01
connections timewait 0.07 0.01
connections synrcv 0.00 0.01
connections closewait 0.01 0.00
connections finwait1 0.00 0.00
disk write 0.01 0.00
connections synsent 0.00 0.00
paging processes 0.00 0.00
cpu steal 0.00 0.00
stopped processes 0.00 0.00
used memory 0.00 0.00
cpu iowait 0.00 0.00
cpu interrupt 0.00 0.00
cpu nice 0.00 0.00

Table 5.9: Precision and recall per input column for the Random Forest regressor
without PCA preprocessing. Anomaly classifications are received by a prediction
error being too high, thus each table row describes classification retrieved by using
predictions for separate input dimensions. Then a sum and average are computed
per data sample and the same anomaly classification mechanism is deployed.

30

Conclusion
This project set to explore the possibility of using advanced data analytics to
detect anomalies implying erratic behavior of nodes in a cluster running a dis-
tributed application. We first built an infrastructure to collect, pre-process and
store os-level monitoring data using the MONIT infrastructure at CERN. With
continuous data gathering in place, we selected a cluster of ten nodes running
Kafka, a distributed streaming application. We then began altering the server
performance by running other programs or stopping the Kafka application service
to induce anomalous behavior.

A set of two unsupervised novelty and outlier detection algorithms was se-
lected along with a set of three various supervised regression algorithms. The
unsupervised algorithms directly flagged the anomalies, while the regression al-
gorithms predicted the future system state based on its’ short history and the
aggregated status of the rest of the cluster. The predictions were then compared
to the actual state and the error was used to make the anomaly detection. The
algorithms were trained and their respective performance was evaluated both by
standard metrics, and by the usability for the final user. To improve the later
a simple heuristic was thought of, eradicating the false positives while keeping a
high recall rate.

The final system with a Random Forest regressor, PCA dimensionality re-
duction and anomaly notification filtering heuristic yielded a recall of 0.7 with a
precision of 100%, with all the notifications were issued shortly after the anomaly
start. Recall could be improved still to 0.78 by using a model trained on data
without reduced dimensionality, which however increases the complexity and also
results in a delay in detecting certain types of anomalies.

The initial results were presented2 on the Computing in High Energy Physics
2018 (CHEP2018) conference in track Networks and facilities and were published
in the conference proceedings [29]. On CHEP2019 an update was given3 and the
full results are to be published in the conference proceedings.

Future Work
Work on this project will continue by developing a production version. This will
pose many challenges, including making the process of extraction of anomalies
from prediction errors online. Also the problems of automatic retraining of the
models have to be solved. Those involve the problem of detecting days, when
the whole application is experiencing difficulties and excluding those from the
training set and others.

2Contribution details: indico.cern.ch/event/587955/contributions/2937940/
3Contribution details: indico.cern.ch/event/773049/contributions/3473855/

31

Bibliography
[1] Martin Hilbert and Priscila López. The world’s technological capacity to

store, communicate, and compute information. Science, 332(6025):60–65,
2011.

[2] Martin Hilbert. Information Quantity, pages 1–4. Springer International
Publishing, Cham, 2017.

[3] M. Mitchell Waldrop. The chips are down for moore’s law. Nature,
530(7589):144–147, 2016-2-9.

[4] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia dis-
tributed monitoring system: design, implementation, and experience. Par-
allel Computing, 30(7):817 – 840, 2004.

[5] Patricia Jung. Munin-the raven reports. Linux J., 2009(180), April 2009.

[6] Nagios, the industry standard in it infrastructure monitoring.
www.nagios.org/projects/nagios-core/. [Online, Accessed: 2019-
03-06].

[7] Collectd, the system statistics collection daemon. www.collectd.org. [On-
line, Accessed: 2019-03-06].

[8] Influxdb, open source time series database.
www.influxdata.com/products/influxdb-overview/. [Online, Accessed:
2019-05-29].

[9] Grafana. www.grafana.com/grafana. [Online, Accessed: 2019-05-30].

[10] Elk stack: Elasticsearch, logstash, kibana. www.elastic.co/elk-stack.
[Online, Accessed: 2019-06-02].

[11] Clinton Gormley and Zachary Tong. Elasticsearch: The definitive guide: A
distributed real-time search and analytics engine. ” O’Reilly Media, Inc.”,
2015.

[12] Ian Bird. Computing for the large hadron collider. Annual Review of Nuclear
and Particle Science, 61(1):99–118, 2011.

[13] A Aimar, A Aguado Corman, P Andrade, S Belov, J Delgado Fernandez,
B Garrido Bear, M Georgiou, E Karavakis, L Magnoni, R Rama Ballesteros,
H Riahi, J Rodriguez Martinez, P Saiz, and D Zolnai. Unified monitoring
architecture for it and grid services. Journal of Physics: Conference Series,
898(9):092033, 2017.

[14] Nishant Garg. Apache Kafka. Packt Publishing, 2013. ISBN: 978-
1782167938.

32

[15] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and
Ion Stoica. Apache spark: A unified engine for big data processing. Commun.
ACM, 59(11):56–65, October 2016.

[16] Danilo Piparo, Enric Tejedor, Pere Mato, Luca Mascetti, Jakub Moscicki,
and Massimo Lamanna. Swan: A service for interactive analysis in the cloud.
Future Generation Computer Systems, 78:1071 – 1078, 2018.

[17] Anna L Buczak and Erhan Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communica-
tions Surveys & Tutorials, 18(2):1153–1176, 2015.

[18] Robin Sommer and Vern Paxson. Outside the closed world: On using ma-
chine learning for network intrusion detection. In 2010 IEEE symposium on
security and privacy, pages 305–316. IEEE, 2010.

[19] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos
Bassias, and Ke Li. Aiˆ 2: training a big data machine to defend. In 2016
IEEE 2nd International Conference on Big Data Security on Cloud (Big-
DataSecurity), IEEE International Conference on High Performance and
Smart Computing (HPSC), and IEEE International Conference on Intelli-
gent Data and Security (IDS), pages 49–54. IEEE, 2016.

[20] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure
prediction methods. ACM Comput. Surv., 42, 03 2010.

[21] Xiaohui Gu and Haixun Wang. Online anomaly prediction for robust cluster
systems. pages 1000 – 1011, 05 2009.

[22] E. Kiciman and A. Fox. Detecting application-level failures in component-
based internet services. IEEE Transactions on Neural Networks, 16(5):1027–
1041, Sep. 2005.

[23] Xinghao Pan, Jiaqi Tan, Soila Kavulya, Rajeev G, and Priya Narasimhan.
Ganesha: Black-box fault diagnosis for mapreduce systems. 01 2008.

[24] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long
short term memory networks for anomaly detection in time series. In Pro-
ceedings, page 89. Presses universitaires de Louvain, 2015.

[25] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian
Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V
Chawla. A deep neural network for unsupervised anomaly detection and
diagnosis in multivariate time series data. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 1409–1416, 2019.

[26] Jean claude Laprie and Brian Randell. Fundamental concepts of computer
systems dependability. In Proc. of the Workshop on Robot Dep. , Seoul,
Korea, pages 21–22, 2001.

33

[27] Stuart P. Lloyd. Least squares quantization in pcm’s. IEEE Transactions
on Information Theory, 28:129–136, 03 1982.

[28] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian
P. Flannery. Section 16.1. gaussian mixture models and k-means cluster-
ing. In Numerical recipes, pages –. Cambridge University Press, Cambridge,
1st ed. edition, c1996.

[29] Martin Adam, Luca Magnoni, Martin Pilát, and Dagmar Adamová. Detec-
tion of erratic behavior in load balanced clusters of servers using a machine
learning based method. In EPJ Web of Conferences, volume 214, page 08030.
EDP Sciences, 2019.

[30] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Za-
haria, and Ameet Talwalkar. Mllib: Machine learning in apache spark. J.
Mach. Learn. Res., 17(1):1235–1241, January 2016.

[31] Hervé Abdi and Lynne J. Williams. Principal component analysis. WIREs
Comput. Stat., 2(4):433–459, July 2010.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[33] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-
Taylor, and John C Platt. Support vector method for novelty detection.
In Advances in neural information processing systems, pages 582–588, 2000.

[34] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
2008 Eighth IEEE International Conference on Data Mining, pages 413–
422. IEEE, 2008.

[35] Taylor G. Smith et al. pmdarima: Arima estimators for Python.
www.alkaline-ml.com/pmdarima. [Online; accessed 29/12/2019].

[36] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.

34

List of Figures

1.1 MONIT architecture . 8

2.1 Relations between faults, errors and failures. 11

3.1 Scheme of the data collecting pipeline inside the MONIT infras-
tructure. Note that only parts relevant for this work are depicted.
Connection between Kafka (blue) and Spark (orange) is handled
by Sparks’ Kafka library. Filling Kafka and writting into HDFS is
done by Flume agents. 15

3.2 Result of a run of the K-Means clustering algorithm on PCA trans-
formed data. Colors correspond to the clustering classification. . . 17

4.1 Proportions of variance explained by each principal component. . 19

5.1 Prediction error in the first and second dimension with PCA of the
BASELINE algorithm during a day with a service stop anomaly.
Top chart is for the anomalous host, bottom for a random one.
The anomaly started at 12:00 and ended at 16:00 24

5.2 Prediction error in the first and second dimension with PCA of the
BASELINE algorithm during a day with a cpu overuse anomaly.
Top chart is for the anomalous host, bottom for a random one.
There were two anomalies inserted that day: 10:00-14:00 and 18:00-
22:00. 25

5.3 Prediction error in the first and second dimension with PCA of
the Random Forest algorithm during a day with a service stop
anomaly. The anomaly started at 12:00 and ended at 16:00. . . . 25

35

List of Tables

3.1 All the collected collectd metrics. The second column notes, whether
the metric was used in the dataset before the metric number expan-
sion. 1SLAB is a memory management mechanism for increasing
efficiency of memory allocation and reuse by the Linux kernel . . 14

3.2 Final anomaly count per type. 16

5.1 Mean precision and recall for the unsupervised algorithms. Suffix
-pca3 means the algorithms’ input data were pre-processed by
PCA and the first three components were used, the -pca5 suffix
denotes an algorithm trained on the first 5 components of the PCA
decomposition and the -nopca suffix denotes an algorithm trained
and applied on data without any PCA pre-processing. 22

5.2 The two best and worst days with respect to recall with anoma-
lies on which the Isolation Forest algorithm without PCA pre-
processing was applied . 23

5.3 The two best and worst days with respect to recall with anomalies
on which the OC-SVN algorithm on the first five components of
PCA. 23

5.4 Mean errors per output column for the regression algorithms. LR
represents Linear regression and RF the Random Forest regressor. 23

5.5 All anomalies marked by applying the three-sigma rule to the first
dimension error of the Random Forest regressor on a day with a
service stop anomaly. The anomaly started at 12:00 and ended at
16:00. 26

5.6 Recall (top) and precision (bottom) for the regression models.
Anomaly classifications are received by a prediction error being
too high, thus each table column describes classification retrieved
by using predictions for separate input dimensions. Then a sum
and average are computed per data sample and the same anomaly
classification mechanism is deployed. The last two columns de-
scribe the recall received from such aggregated errors. 27

5.7 Anomaly detection with the notifications filtering heuristic. Values
are the lag of time windows the algorithm needed to detect the
anomaly, NaN is a non-detection. 28

5.8 Summary results for the whole system with notification filtering
and 1∗std dev as the anomaly classification prediction error thresh-
old. Notifying on the anomaly at the time of its’ end is not counted
here as valid notification. 29

5.9 Precision and recall per input column for the Random Forest re-
gressor without PCA preprocessing. Anomaly classifications are
received by a prediction error being too high, thus each table row
describes classification retrieved by using predictions for separate
input dimensions. Then a sum and average are computed per data
sample and the same anomaly classification mechanism is deployed. 30

36

B.1 Full results for the I-forest-nopca model. 40
B.2 Full results for the I-forest-pca5 model. 41
B.3 Full results for the I-forest model. 41
B.4 Full results for the OC-SVN-nopca model. 42
B.5 Full results for the OC-SVN-pca5 model. 42
B.6 Full results for the OC-SVN model. 43
B.7 Anomaly detection with the notifications filtering heuristic. Values

are the lag of time windows the algorithm needed to detect the
anomaly, NaN is a non-detection. With a recall of 0.55 and no
false positives, the best algorithm is the Isolation Forest without
any PCA pre-processing. 44

37

List of Abbreviations
VM – Virtual Machine. A software program that exhibits the behavior of a sep-

arate computer (running an operating system, applications and programs
like a separate computer).

JSON – JavaScript Object Notation, a standardized file format

OS – Operating System

QA – Quality Assurance

CERN European Organization for Nuclear Research (name derived from Conseil
Européen pour la Recherche Nucléaire) – European research organization
that operates the largest particle physics laboratory in the world.

LHC Large Hadron Collider – the world’s largest and most powerful particle
collider built by CERN

WLCG The Worldwide LHC Computing Grid – global collaboration of more
than 170 computing centers in 42 countries, linking up national and inter-
national grid infrastructures

PCA Principal Component Analysis algorithm [31], used in this work for dimen-
sionality reduction.

RF Random Forest, used in this work to denote the Random Forest based re-
gression algorithm

LR Linear Regression

38

A. Attachments
This appendix describes the contents of the attached archive.

A.1 Data Collection Spark Jobs
The /Data-Acquisition/ directory contains two directories, each with a whole
build-able project of one of the Spark Streaming jobs collecting and aggregating
the data for the dataset. Each directory contains a README.md file with basic
description and instruction on how to build the project, however the jobs are
purposely built to fit the MONIT infrastructure, so no further run or deployment
manual is included.

The /Data-Acquisition/spark-collectd-agg-job contains code for the
first job, which reads all the collectd data from the MONIT infrastructure and
aggregates it.

The /Data-Acquisition/spark-collectd-join-job contains code for the
second job, which reads the first jobs output and creates server status snapshots.

A.2 Data Analysis
The /Data-Analysis/ directory contains Jupyter1 notebooks used to analyze
the data collected by the streaming jobs and stored in HDFS. In the subdirectory
/Data-Analysis/results/, some intermediate results in csv format are stored.
Please consult the attached /Data-Analysis/README.txt file for further instruc-
tions.

A.3 Raw Dataset
The /Dataset/ directory contains the raw data downloaded directly from HDFS.
The sub-directory structure partitions the data by date it was taken. The data
itself is stored in compressed json format to be read directly by a Spark appli-
cation.

1https://jupyter.org/

39

B. Unsupervised Algorithms
Results
This attachment provides the unabbreviated results of the unsupervised algo-
rithms.

date true positives false positives precision recall
2019/02/09 2 7 0.22 0.17
2019/02/10 5 4 0.56 0.42
2019/02/11 2 6 0.25 0.17
2019/02/19 6 1 0.86 0.50
2019/02/20 5 1 0.83 0.42
2019/02/21 6 1 0.86 0.50
2019/02/22 6 1 0.86 0.50
2019/06/05 5 3 0.62 0.42
2019/06/06 4 3 0.57 0.33
2019/11/27 8 0 1.00 0.67
2019/11/28 8 0 1.00 0.33
2019/11/29 8 0 1.00 0.33
2019/11/30 7 0 1.00 0.58
2019/12/01 8 0 1.00 0.33
2019/12/16 5 2 0.71 0.21
2019/12/17 7 1 0.88 0.29
2019/12/18 8 0 1.00 0.33
2019/12/19 7 1 0.88 0.29
2019/12/20 8 0 1.00 0.33

Table B.1: Full results for the I-forest-nopca model.

40

date true positives false positives precision recall
2019/02/09 1 8 0.11 0.08
2019/02/10 1 8 0.11 0.08
2019/02/11 2 6 0.25 0.15
2019/02/19 4 3 0.57 0.31
2019/02/20 5 2 0.71 0.38
2019/02/21 5 2 0.71 0.38
2019/02/22 5 2 0.71 0.38
2019/06/05 7 1 0.88 0.54
2019/06/06 7 0 1.00 0.54
2019/11/27 8 0 1.00 0.62
2019/11/28 8 0 1.00 0.31
2019/11/29 7 1 0.88 0.27
2019/11/30 7 0 1.00 0.54
2019/12/01 8 0 1.00 0.31
2019/12/16 7 0 1.00 0.27
2019/12/17 7 1 0.88 0.27
2019/12/18 5 3 0.62 0.19
2019/12/19 6 2 0.75 0.23
2019/12/20 8 0 1.00 0.31

Table B.2: Full results for the I-forest-pca5 model.

date true positives false positives precision recall
2019/02/09 0 9 0.00 0.00
2019/02/10 0 9 0.00 0.00
2019/02/11 0 8 0.00 0.00
2019/02/19 4 3 0.57 0.33
2019/02/20 4 3 0.57 0.33
2019/02/21 4 2 0.67 0.33
2019/02/22 5 2 0.71 0.42
2019/06/05 8 0 1.00 0.67
2019/06/06 6 1 0.86 0.50
2019/11/27 7 0 1.00 0.58
2019/11/28 8 0 1.00 0.33
2019/11/29 7 1 0.88 0.29
2019/11/30 7 0 1.00 0.58
2019/12/01 8 0 1.00 0.33
2019/12/16 7 0 1.00 0.29
2019/12/17 6 2 0.75 0.25
2019/12/18 6 2 0.75 0.25
2019/12/19 7 1 0.88 0.29
2019/12/20 7 0 1.00 0.29

Table B.3: Full results for the I-forest model.

41

date true positives false positives precision recall
2019/02/09 2 7 0.22 0.17
2019/02/10 2 8 0.20 0.17
2019/02/11 5 6 0.45 0.42
2019/02/19 3 4 0.43 0.25
2019/02/20 2 3 0.40 0.17
2019/02/21 2 4 0.33 0.17
2019/02/22 5 3 0.62 0.42
2019/06/05 2 3 0.40 0.17
2019/06/06 2 5 0.29 0.17
2019/11/27 3 6 0.33 0.25
2019/11/28 1 5 0.17 0.04
2019/11/29 1 7 0.12 0.04
2019/11/30 1 5 0.17 0.08
2019/12/01 3 4 0.43 0.12
2019/12/16 2 6 0.25 0.08
2019/12/17 4 5 0.44 0.17
2019/12/18 0 6 0.00 0.00
2019/12/19 1 8 0.11 0.04
2019/12/20 1 7 0.12 0.04

Table B.4: Full results for the OC-SVN-nopca model.

date true positives false positives precision recall
2019/02/09 2 5 0.29 0.15
2019/02/10 3 5 0.38 0.23
2019/02/11 5 5 0.50 0.38
2019/02/19 4 3 0.57 0.31
2019/02/20 4 2 0.67 0.31
2019/02/21 4 3 0.57 0.31
2019/02/22 1 2 0.33 0.08
2019/06/05 2 7 0.22 0.15
2019/06/06 3 5 0.38 0.23
2019/11/27 3 6 0.33 0.23
2019/11/28 3 4 0.43 0.12
2019/11/29 3 6 0.33 0.12
2019/11/30 2 4 0.33 0.15
2019/12/01 3 5 0.38 0.12
2019/12/16 3 5 0.38 0.12
2019/12/17 4 5 0.44 0.15
2019/12/18 3 4 0.43 0.12
2019/12/19 4 3 0.57 0.15
2019/12/20 4 3 0.57 0.15

Table B.5: Full results for the OC-SVN-pca5 model.

42

date true positives false positives precision recall
2019/02/09 1 6 0.14 0.08
2019/02/10 4 5 0.44 0.33
2019/02/11 1 8 0.11 0.08
2019/02/19 3 4 0.43 0.25
2019/02/20 10 3 0.77 0.83
2019/02/21 3 4 0.43 0.25
2019/02/22 4 3 0.57 0.33
2019/06/05 2 5 0.29 0.17
2019/06/06 2 7 0.22 0.17
2019/11/27 3 4 0.43 0.25
2019/11/28 3 4 0.43 0.12
2019/11/29 4 8 0.33 0.17
2019/11/30 3 4 0.43 0.25
2019/12/01 4 5 0.44 0.17
2019/12/16 3 4 0.43 0.12
2019/12/17 3 4 0.43 0.12
2019/12/18 3 4 0.43 0.12
2019/12/19 3 6 0.33 0.12
2019/12/20 3 4 0.43 0.12

Table B.6: Full results for the OC-SVN model.

43

anomaly id I-forest-nopca I-forest-pca5 OC-SVN-pca5 OC-SVN
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 6.0 6.0 4.0 4.0
4 NaN NaN 8.0 1.0
5 NaN 8.0 6.0 6.0
6 0.0 NaN NaN 6.0
7 0.0 0.0 NaN NaN
8 NaN 0.0 NaN NaN
9 2.0 0.0 NaN NaN

10 2.0 NaN NaN NaN
11 6.0 6.0 NaN NaN
12 0.0 NaN NaN NaN
13 1.0 NaN NaN NaN
14 1.0 1.0 NaN 4.0
15 4.0 NaN NaN NaN
16 3.0 3.0 NaN NaN
17 NaN 1.0 NaN 3.0
18 8.0 5.0 NaN NaN
19 0.0 0.0 NaN NaN
20 NaN NaN NaN NaN
21 NaN NaN NaN NaN
22 NaN 3.0 NaN NaN
23 0.0 0.0 1.0 1.0
24 NaN NaN NaN NaN
25 7.0 0.0 3.0 NaN
26 NaN NaN NaN NaN

Table B.7: Anomaly detection with the notifications filtering heuristic. Values
are the lag of time windows the algorithm needed to detect the anomaly, NaN is
a non-detection. With a recall of 0.55 and no false positives, the best algorithm
is the Isolation Forest without any PCA pre-processing.

44

C. Raw Data Schemes
This attachment provides examples of data handled by the Spark streaming jobs.

First, the scheme of the raw collectd stream:
{

”metadata ” : {
” a v a i l a b i l i t y z o n e ” : ” cern−geneva−b” ,
” submitter environment ” : ” product ion ” ,
” type ” : ”cpu ” ,
” t op l ev e l ho s t g r oup ” : ” monitor ing ” ,
” event timestamp ” : 1578144918000 ,
” v e r s i on ” : ”3 . 0 ” ,
” timestamp format ” : ”yyyy−MM−dd” ,
” submit te r hostgroup ” : ” monitor ing / kafkax ” ,
” t y p e p r e f i x ” : ”raw ” ,
” producer ” : ” c o l l e c t d ” ,
” i d ” : ” c14174f0−c157−431e−f6c4 −740750 cb228c ” ,
” timestamp ” : 1578144918627

} ,
” data ” : {

” time ” : 1578144918.605 ,
” i n t e r v a l ” : 60 ,
” host ” : ”monit−kafkax −003. cern . ch ” ,
” p lug in ” : ”cpu ” ,
” p l u g i n i n s t a n c e ” : ”” ,
” type ” : ” percent ” ,
” t ype in s t anc e ” : ” n i c e ” ,
” va lue ” : 0 .120220690839613 ,
” dstype ” : ” gauge ”

}
}

45

Second, the scheme of the adam agg METRIC topic:
{

”metadata ” : {
” producer ” : ”adam” ,
” t y p e p r e f i x ” : ” agg ” ,
” type ” : ”cpu ” ,
” v e r s i on ” : ”003” ,
” timestamp ” : 1526548777000 ,
” event timestamp ” : 1526548972000 ,
” submitter environment ” : ” product ion ” ,
” t op l ev e l ho s t g r oup ” : ” monitor ing ” ,
” a v a i l a b i l i t y z o n e ” : ” cern−geneva−c ” ,
” submit te r hostgroup ” : ” monitor ing / flume / dcsource ”

} ,
” data ” : {

” host ” : ”monit−dcsource −005. cern . ch ” ,
”window ” : {

” s t a r t ” : ”2018−05−17T09 : 0 0 : 0 0 . 0 0 0 Z” ,
”end ” : ”2018−05−17T09 : 2 0 : 0 0 . 0 0 0 Z”

} ,
” va lue ” : 17 .635935492350388 ,
” p lug in ” : ”cpu ” ,
” dstype ” : ” gauge ” ,
” i n t e r v a l ” : 60 ,
” p l u g i n i n s t a n c e ” : ”” ,
” time ” : 1526547637.952 ,
” type ” : ” percent ” ,
” t ype in s t anc e ” : ” i d l e ” ,
” v a l u e i n s t a n c e ” : ””

}
}

46

Finaly, the scheme of the joined adam agg os topic:
{

”metadata ” : {
” producer ” : ”adam” ,
” t y p e p r e f i x ” : ” agg ” ,
” type ” : ” os ” ,
” v e r s i on ” : ”001” ,
” timestamp ” : 1577895402000 ,
” event timestamp ” : 1577896530000 ,
” submitter environment ” : ” product ion ” ,
” t op l ev e l ho s t g r oup ” : ” monitor ing ” ,
” a v a i l a b i l i t y z o n e ” : ” cern−geneva−c ” ,
” submit te r hostgroup ” : ” monitor ing / kafkax ”

} ,
” data ” : {

” host ” : ”monit−kafkax −003. cern . ch ” ,
”window ” : {

”end ” : ”2020−01−01T16 : 2 0 : 0 0 . 0 0 0 Z” ,
” s t a r t ” : ”2020−01−01T16 : 0 0 : 0 0 . 0 0 0 Z”

} ,
” c p u i d l e ” : 30.462260570062956 ,
” cpu iowa i t ” : 2 .1812271837450967 ,
” c p u s o f t i r q ” : 3 .5391269724934715 ,
” cpu user ” : 48.605475713788586 ,
” cpu n i ce ” : 0 .13508588341582906 ,
” cpu system ” : 11.160662822483916 ,
” cpu in t e r rup t ” : 0 ,
” c p u s t e a l ” : 3 .916160854010129 ,
”used memory ” : 7355500748.8 ,
” free memory ” : 163472588 .8 ,
” cached memory ” : 7190465536 ,
” s labrec l memory ” : 401223475 .2 ,
” s labunrecl memory ” : 92390809 .6 ,
” runn ing p roc e s s e s ” : 0 . 75 ,
” s l e e p i n g p r o c e s s e s ” : 161 .5 ,
” s t opped proc e s s e s ” : 0 ,
” b l o ck ed p ro c e s s e s ” : 0 ,
” zombie proce s s e s ” : 0 ,
” pag ing p ro c e s s e s ” : 0 ,
” c o n n e c t i o n s e s t a b l i s h e d ” : 2341 ,
” c o n n e c t i o n s f i n w a i t 2 ” : 21 .25 ,
” c o n n e c t i o n s f i n w a i t 1 ” : 0 . 25 ,
” connec t i on s synrcv ” : 0 ,
” c o n n e c t i o n s c l o s i n g ” : 0 ,
” c o n n e c t i o n s l a s t a c k ” : 0 ,
” c o n n e c t i o n s c l o s e w a i t ” : 2 . 75 ,
” connec t i on s syns en t ” : 0 ,
” c o n n e c t i o n s c l o s e d ” : 0 ,

47

” connec t i ons t imewa i t ” : 3 . 5 ,
” c o n n e c t i o n s l i s t e n ” : 18 ,
” load ” : 1 .1688125 ,
” by t e s s en t ” : 108987147.76704645 ,
” b y t e s r e c e i v e d ” : 90456066.98804408 ,
” d i s k w r i t e ” : 22022261.978565954 ,
” d i s k r ead ” : 8888375.96737196

}
}

48

	Introduction
	Monitoring Systems Overview
	All-in-one Monitoring Systems
	Modular Monitoring Systems
	CollectD + InfluxDB + Grafana
	Elastic Stack
	MONIT

	Monitoring Data Analysis Works
	Intrusion detection
	Failure prediction
	Black-box methods

	Time series analysis

	Problem statement and Approach
	Definitions
	Hypotheses
	Goals
	Non-goals

	Data Gathering and Aggregating
	Recording OS Metrics using MONIT
	Creating anomalies
	Initial Data Exploration

	Anomaly Detection Module
	Data Pre-processing
	Unsupervised Learning
	Supervised Regression
	Non-Spark Model
	Spark Models

	Model Evaluation
	Unsupervised Learning
	Supervised learning
	Extracting Anomaly Information from Prediction Error
	Filtering Anomaly Notification feed

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Data Collection Spark Jobs
	Data Analysis
	Raw Dataset

	Unsupervised Algorithms Results
	Raw Data Schemes

