

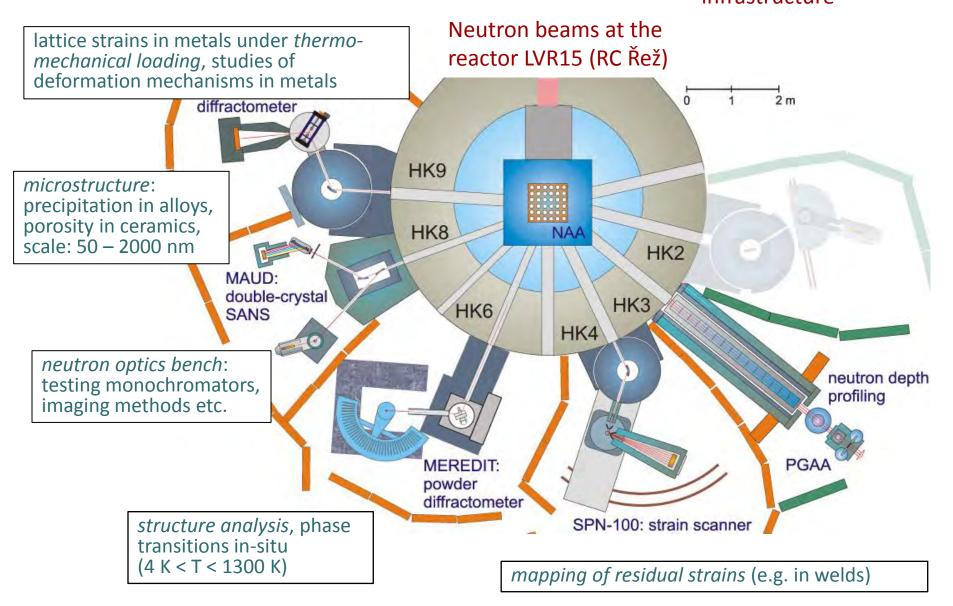
NUCLEAR PHYSICS INSTITUTE

THE CZECH ACADEMY OF SCIENCES

PUBLIC RESEARCH INSTITUTION

NEUTRON DIFFRACTION

JAN ŠAROUN



EUROPEAN UNION
European Structural and Investment Funds
Operational Programme Research,
Development and Education

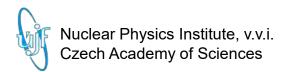
Neutron diffraction experiments at NPI

Part of the NPI-CANAM infrastructure

European Spallation Source (ESS)

5 MW spallation neutron source in Lund, Sweden

Features:


- 2 GeV, 14 Hz linac
- peak power 125 MW
- 4t rotating W target
- high-brightness bi-spectral moderator (H₂O + para-H₂)
- 22 neutron beamlines
- 16 operational by 2025

Czech in-kind contribution

The NPI ND team participates in the design and construction of

Beamline for European Materials Engineering Research (BEER)

Joint project of

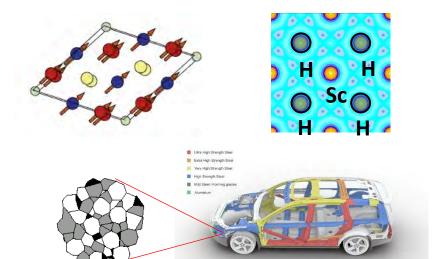
and

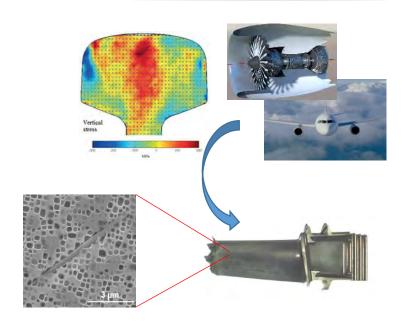
Material research with neutrons

Structure analysis

positions of light atoms magnetic structure

Deformation mechanisms

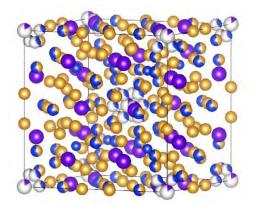

lattice strains: response to external load, plastic deformation, phase transformation, twining, ...


Residual stresses

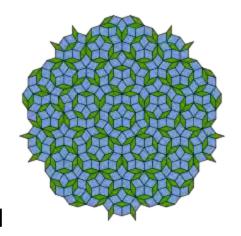
affect structural integrity accumulate during manufacturing and use welding, rolling, mechanical and thermal load, cycling

Microstructure

phase transitions: evolution of precipitates nanovoids, texture, fatigue cracks

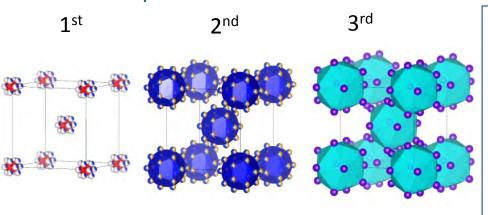


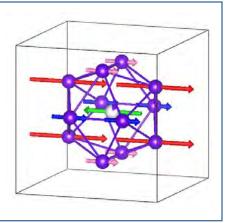
www.snipview.com


1. Quasicrystal approximants

Tb-Au-Si

quasicrystal:

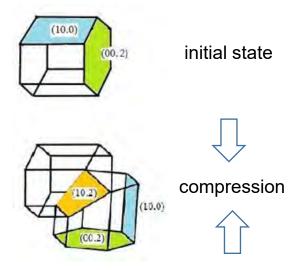

- symmetric
- aperiodic


quasicrystal approximant:

- regular crystal with a complex unit cell
- composition similar to a real QC
- contains motives with QA symmetry

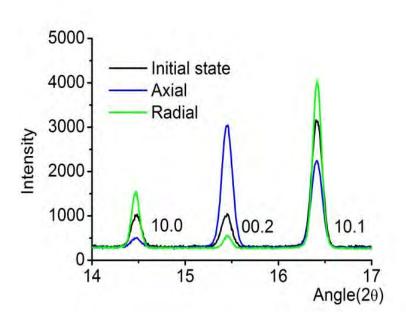
coordination spheres:

Ferrimagnetic-like ordering of magnetic moments in TbAuSi



1st determination of magnetic structure in a quasicrystal approximant was done at NPI

G. Gebresenbut, M. S. Andersson, <u>P. Beran</u>, P. Manuel, P. Nordblad, M. Sahlberg and C. P. Gomez, *J. Phys.: Condens. Matter* 26 (2014) 322202.


2. Deformation mechanisms of Mg alloys and composites

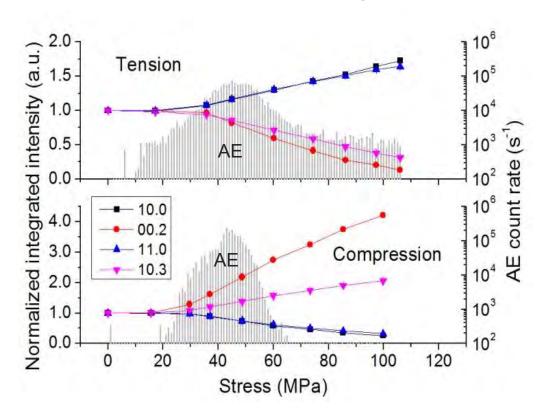
Twinning in Mg alloys

Neutron diffraction (ND):

Change in the **volume of the twinned grains** can be derived from variation of peak intensities

Volume of twinned grains changes by

- 1) creation of new twins, especially at initial stage of deformation
- 2) growth of twinned grains at later stages

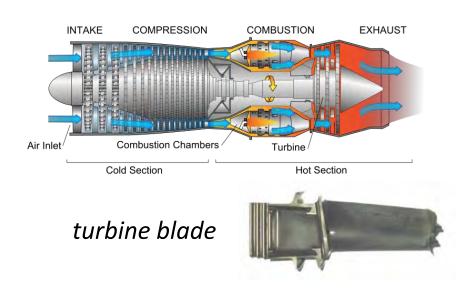

Cannot be distinguished by neutron diffraction alone

2. Deformation mechanisms of Mg alloys and composites

Acoustic emission (AE):

Creation of new twins is accompanied by sound effects => recording of AE during deformation reveals the **number of twinned grains**

Combination of acoustic emission + neutron diffraction



Collaboration with MFF UK:

- J. Čapek, G. Farkas, J. Pilch, K. Máthis, Materials Science & Engineering A 627 (2015) 333–335.
- J. Čapek, K. Mathis, B. Clausen, J. Straska, P. Beran, and P. Lukáš, Materials Science and Engineering
 A Structural materials 602 (2014) 25–32.

3. Stability of Co-Re alloys at HT

Applications: aircraft, energy industry (gas turbine)

efficiency
$$\eta_{th} \leq 1 - \frac{T_C}{T_H}$$

Requires:

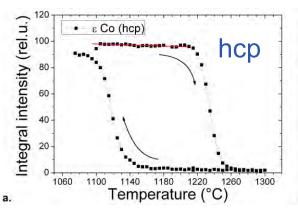
- high T_H
- strength, oxidation resistance

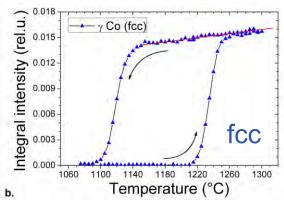
Current limits:

Ni base superalloys: $T_H \approx 1100$ °C

Co-Re base alloys: new candidate for HT applications, melting T > 1540 °C

search for strengthening precipitates, which are stable at HT

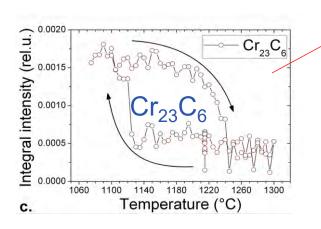

Collaboration with TU Braunschweig/TU Munich

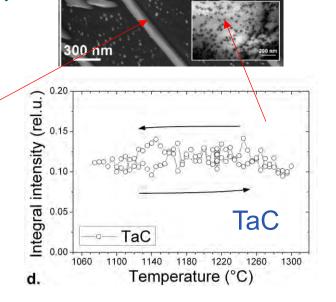

- D. Mukherji, P. Strunz, R. Gilles, M. Hofmann, F. Schmitz, J. Rösler. Materials Letters 64 (2010) 2608-2611.
- D. Mukherji, R. Gilles, L. Karge, <u>P. Strunz, P. Beran</u>, H. Eckerlebe, A. Stark, L. Szentmiklosi, Z. Mácsik, G. Schumacher, I. Zizak, M. Hofmann, M. Hoelzel and J. Rösler, *J. Appl. Cryst.* 47 (2014) 1417-1430.

3. Stability of Co-Re alloys at HT

Neutron Diffraction (ND)

hysteresis in Co phase transformations at HT





... linked to microstructure

Small-Angle Neutron Scattering (SANS)

HT microstructural stability

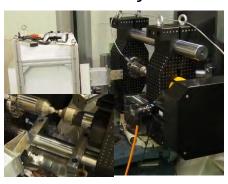
TaC found to be a promising candidate for HT strengthening

Thank you for your attention

EXPERIMENTAL BASE

Sample environment for in-situ experiments with neutrons

20 kN deformation rig with current heating


vacuum furnaces for SANS

vacuum furnace for powder diffraction

60 kN deformation rig with vacuum furnace

robotic arm for sample positioning

closed-cycle cryostat

