Nuclear reactions for astrophysics

experimental activities in NPI CAS and collaborations

Jaromir Mrazek

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Outline

- Indirect methods
 - Asymptotic Normalization Coefficients
 - Trojan Horse Method
- project SPIRAL2-CZ and
- nuclear reactions with astrophysical context in GANIL/SPIRAL2 and IPN Orsay

Experimental environment in NPI CAS

U120M cyclotron

(talk of J.Dobes and J.Stursa this morning)

U120M can deliver p, d, 3He and 4He beams with energy approx. 10-40 MeV

at intensities up to 20 nA in the experimental hall 102

Experimental environment in NPI CAS

Typical experimental ANC setup in NPI

Why indirect?

Ractions typically at low energies

Energies of Gamow peak

in Sun and AGB stars typically tens or 100 keV

explosive scenarios e.g. p+²⁸Si 380 keV

Astrophysical S factor

$$S(E) = \sigma(E) E \exp(2\pi\eta)$$

Sommerfield factor

 $= Z_1 Z_2 e^2 / (\hbar \iota$

Indirect methods in NPI CAS

Asymptotic Normalization Coefficients (ANC)

- study a direct binary reaction in peripheral conditions
- determine the nuclear vertex constant(s) $X+A\rightarrow Y+B$
- extract a x.s of direct radiative capture $a + A \rightarrow B + gamma$

Trojan Horse method (THM)

13.6.2017

- study a ternary reaction at exact conditions
- determine $x+A \rightarrow C + c$ behavior around E_{trsh}

ANC principles

The method comes from DWBA technique

DWBA amplitude is given by:

$$M(E_i,\cos\theta) = \sum_{M_a} \langle \chi_f^{(-)} I_{Aa}^B | \Delta V | I_{Ya}^X \chi_i^{(+)} \rangle$$

$$I^{\alpha}_{\beta\gamma l_{\alpha}j_{\alpha}}(r_{\beta\gamma}) = S^{1/2}_{\beta\gamma l_{\alpha}j_{\alpha}}\phi_{n_{\alpha}l_{\alpha}j_{\alpha}}(r_{\beta\gamma})$$

DWBA cross section:

 $\sigma^{DW}_{l_B j_B l_x j_x} \sim |M(E_i, cos \theta)|^2$

experimental cross section and spectroscopic factors: $\frac{d\sigma}{d\Omega} = \sum_{j_B j_x} S_{Aal_B j_B} S_{Yal_x j_x} \sigma^{DW}_{l_B j_B l_x j_x}$ Radial overlap function is approximated by a model wave function of the bound state

Spectroscopic factors – model dependent

But IF nuclear interior is not much involved ...

$$X = (Y + a)$$

 A
 Y
 $B = (A + a)$

ANC principles

$$I^{\alpha}_{\beta\gamma l_{\alpha}j_{\alpha}}(r_{\beta\gamma}) = S^{1/2}_{\beta\gamma l_{\alpha}j_{\alpha}}\phi_{n_{\alpha}l_{\alpha}j_{\alpha}}(r_{\beta\gamma})$$

Radial Overlap function in asymptotic behavior

For peripheral reaction:

- <u>C</u> is ANC
- <u>b</u> is a single particle ANC

$$\begin{split} I^{\alpha}_{\beta\gamma l_{\alpha}j_{\alpha}}(r_{\beta\gamma}) & \stackrel{r_{\beta\gamma} > R_{N}}{\longrightarrow} C^{\alpha}_{\beta\gamma l_{\alpha}j_{\alpha}} \frac{W_{-\eta_{\alpha},l_{\alpha}+1/2}(2\kappa_{\beta\gamma}r_{\beta\gamma})}{r_{\beta\gamma}} \\ \phi_{n_{\alpha}l_{\alpha}j_{\alpha}}(r_{\beta\gamma}) & \stackrel{r_{\beta\gamma} > R_{N}}{\longrightarrow} b_{\beta\gamma l_{\alpha}j_{\alpha}} \frac{W_{-\eta_{\alpha},l_{\alpha}+1/2}(2\kappa_{\beta\gamma}r_{\beta\gamma})}{r_{\beta\gamma}} \end{split}$$

$$\frac{d\sigma}{d\Omega} = \sum_{j_B j_x} (C^B_{Aal_B j_B})^2 (C^X_{Yal_x j_x})^2 \frac{\sigma^{DWBA}_{l_B j_B l_x j_x}}{b^2_{Aal_B j_B} b^2_{Yal_x j_x}} = \sum_{j_B j_x} (C^B_{Aal_B j_B})^2 (C^X_{Yal_x j_x})^2 R_{l_B j_B l_x j_x}$$

Jaromir Mrazek, NPI CAS - NPB EPS meeting

And – for **peripheral** reaction - 13.6.2017

is nearly independent of b²

9

Reaction peripherality

Example from ⁹Be(p,gamma)¹⁰B Mukhamedzhanov ,PhysRev56,1302

To verify a peripherality of the reaction in experimental conditions, several checks are done.

- optical potentials were deduced first from the angular distributions

DWBA xs.behaviour without interior(R_{cutoff)}

13.6.2017

Radial bound state wavefunctions for different r_0

Jaromir Mrazek, NPI CAS - NPB EPS meeting

Dependence of Sfactor and C on single particle ANC

Radiative capture reactions in CNO cycle

¹³C + p \leftrightarrow ¹⁴N ¹⁴N + p \leftrightarrow ¹⁵O ¹⁶O + p \leftrightarrow ¹⁷F ¹⁵N + p \leftrightarrow ¹⁶O ¹⁴C + n \leftrightarrow ¹⁵C ¹³C + n \leftrightarrow ¹⁴C ²⁰Ne + p \leftrightarrow ²¹Na

ANCs_Measured_using_(³He,d)_in NPI Rez

$^{15}N(p,gamma)^{16}O$

measured with ¹⁵N(³He,d)¹⁶O

- CN cycle transform to CNO II, CNO III

- dominated by resonant capture to g.s. through two J=1- resonances

A.M.Mukhamedzhanov et al., PRC78, 015804 (2008)PRC83, 044604 (2011) LUNA measurement - 39.6 +-2.6 keV b PRC82, 55804 (2010) Jaromir Mrazek, NPI CAS - NPB EPS meeting

$^{14}C(n,gamma)^{15}C$

skip

using (d,p) reaction

- 'depletes' ¹⁴C in inhomogenous big bang models (production A>20)

- depletion of CNO cycle isotopes in AGB stars, seeds for r-process

- ANC's determined for g.s. and 1st excited state $C^{2}_{01/2} = 1.64 + 0.26 \text{ fm}^{-1}$ $C^{2}_{2.5/2} = (3.55 + 0.43) 10^{-3} \text{ fm}^{-1}$

- **FR-ADWA** approach decreased the errors ($24\% \rightarrow 16\%$)
- value overlaps with that from **mirror symmetry**,
- older d,p measurement overestimated xs. By 30% at fw angles 13.6.2017 Jaromir Mrazek, NPI CAS - NPB EPS meeting

ang.dist. from trans.to g.s.

13

$C^{2}_{01/2}$	
1.89 +- 0.11	¹⁵ F mirror
1.48+-0.18	prev.exp.
1.64+-0.03	Coul.dissoc
1.88 +- 0.18	in TAMU (2014)

¹⁸O(p,gamma)¹⁹F

various ratios of oxygen isotopes can be observed in C.Ch. grains

- depletion reaction of ¹⁸O in AGB stars

12 levels analyzed

S-factor – earlier disagreement

Wiescher et al. x Buckner et al. = prefered

courtesy of Vaclav Burjan

ANC for mirror nuclei

$$|C_p/C_n|^2 = \mathcal{R} \approx \mathcal{R}_0 = \left| \frac{F_l(i\kappa_p R_N)}{\kappa_p R_N j_l(i\kappa_n R_N)} \right|$$

N.K.Timofeyuk et al., Phys.Rev.Lett 91, 232501 (2003)

Timofeyuk, Descouvemont, Phys.Rev.C 71, 064305 (2005)

On the sample of mirror cases it was shown, that with few % precision

- microscopic cluster model calculations should be used to deduce mirror ANC,

- or simultaneous use of the above analytical formulae and single-particle estimate.

Core polarization effects created 12%.

ANC – mirror nuclei

¹⁴N(n,g)¹⁵N – Yi Xu – postoc in NPI CAS (currently in ELI NP)

Mirror reaction to ¹⁴N(p,gamma)¹⁵O - which is mainly responsible for energy production in CNO cycle

13.6.2017

Jaromir Mrazek, NPI CAS - NPB EPS meeting

ANC – mirror nuclei

²⁶Si(p,g)²⁷P – via mirror ²⁶Mg(d,p) - experiment June 2017
 has an impact on amount of observable galactic ²⁶Al

Timofeyuk, Johnson, Mukhamedzhanov – PRL 23 (2003)
 - suggestion for study ²⁶Si(p,g), ²²Ne(p,g)

Timofeyuk, Descouvemont – Phys.Rev.C71 (2005) - systematic study of mirror pairs - ANCs

Two re-analysis Guo et al. PRC73 (2006) (d,p) reaction 12MeV

Timofeyuk, Descouvemont, Thompson PRC78 (2008) t,d reaction

ANC — new method to determine spectroscopic factors

Matching ANCs at low and high energy - idea of A.Mukhamedzhanov ¹⁴C+n pilot experiment ¹³C(¹⁴C,¹⁵C)¹²C and ¹⁴C(d,p) in TAMU McClesky et al., PRC89, 044605 (2014)

ANCs measured at sub-Coulomb energies can provide good asymptotic tails

At high energies –knowing the tails (SPANC) – ANC can be produced ----> spectroscopic factors can be better constrained

ANC – new method to determine spectroscopic factors

Low energy beamline - Van de Graaff - UTEF, Prague, ~ 2MV, 2uA

SPIRAL2 – CZ project/ MEYS support 2016-2022

NPI CAS has long term collaboration with GANIL – SPIRAL2

this collaboration was/is also supported by

LEA NuAG (2011-2014) prolonged for years 2015-2018 Associated EU Laboratory – Nuclear Astrophysics and Grids – support for experiments in GANIL, Orsay, NPI Rez – helped to promote SPIRAL2-CZ project

SPIRAL2 – CZ project/ MEYS support 2016-2022

Project SPIRAL2-CZ has passed into the

Czech Roadmap of large research infrastructures 2016 - 2022

Nuclear Astrophysics,

Nuclear data: activation by charged particles and neutrons, radioisotopes for medicine

The **research infrastructure** project **SPIRAL2-CZ** was positively evaluated in 2015

- supporting EU program appeared evaluated in 2016/2017
- Total planned budget ~300 kE / year

supporting people, administration, investments + travels

• ongoing new evaluation in 2017

SPIRAL2 – CZ / LEA NuAG

- Astrophysical program with GANIL and IPN Orsay
- ¹⁴O(p,p')¹⁴O in GANIL Phys.Lett.B, 758, 26-31. (2016) predictions of 2nd ½- narrow state - Canton et al Phys. Rev. Lett, vol.96,072502, observed in experiment in GANIL,
 ²He decay, cluster near threshold – coupling to nearby cluster decay channel follow up proposal in GANIL, accepted by PAC (I.Stefan)
- Lifetime measurement of 7.786 MeV state in ²³Mg (C.Michelagnoli)

new experimental efforts at low energies – GANIL - SPIRAL2/NFS (B.Bastin)
 ²⁸Si(p,gamma)²⁹P ²⁹Si(p,gamma)³⁰P have uncertainties 21% and 30% accepted by PAC

13.6.2017

Jaromir Mrazek, NPI CAS - NPB EPS meeting

SPIRAL2-CZ - ROBOT target

Production target – Rez-Other Targets Other Beams - investment in SPIRAL2-CZ

- ¹⁴O production measurements ³He+¹²C to in NPI CAS in 2011 **~2 x 10^11 pps in SPIRAL2 at 35kW**
- *demonstrator* development of the 14,15 O beam for SPIRAL/SPIRAL2 (2019)

A. Pichard et al EPJ A 47 (2011) 1

Jaromir Mrazek, NPI CAS - NPB EPS meeting

Collaboration

NPI CAS : V.Burjan, V.Kroha, J.Mrázek, I.Sivacek, Yi Xu, Š.Piskoř, Z.Hons

TAMU : A.M.Mukhamedzhanov, R.E.Tribble, McCleskey ...

INFN-LNS : C.Spitaleri, S.Romano, M.LaCognata, G.Pizzone, L.Lamia, G.Rappissarda

GANIL: F.de Oliveira, B.Bastin, C.Michalognoli, M.Lewitowicz,

IPN Orsay: F.Hammache, N.de Serreville, I. Stefan