Multidisciplinary applications of neutron activation analysis (NAA) at NPI J. Kučera, J. Kameník, J. Mizera, Z. Řanda

Nuclear Physics Institute, CAS, Husinec-Řež, Czech Republic

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Facilities for NAA at NPI

- Irradition in the LVR-15 reactor at a thermal neutron fluence rate up to $5x10^{13}$ cm⁻² s⁻¹

• Facilities for both short-time (10 s – 180 s) and longtime (several hours – several days) irradiation

• 4 coaxial high efficiency (20-78 %), high resolution (FWHM 1.75-1.85 keV @ 1332.5 keV) HPGe detectors

• 2 planar HPGe detectors (thickness 15 mm, area 500 mm², FWHM 550 eV @ 122 keV)

- 1 well-type HPGe detector (eff. volume 150 cm³, FWHM 2.02 keV @ 1332.5 keV)
- Radiochemical laboratories

Advantages and major applications of NAA

- highly penetrating nature of neutrons as activation
 particles and emitted γ-rays of activation products leading
 to virtual matrix independence
- **non-destructive and multi-elemental character** of analysis as a result of the above properties
- very low detection limits and high specificity for a large number (30-40) of elements
- independence of chemical state and virtual **absence of** analytical blank
- high potential for accuracy and low uncertainty of results
- Applications: Environmental control and monitoring, biomedicine, geo- and cosmochemistry, material science, cultural heritage, mycogeochemistry, chemometry (control analyses, certification of reference materials)

Culture heritage studies

Cultural heritage studies (historical forensics)

Determination of Hg in Tycho Brahe's remains (hair, bones) by RNAA Was Tycho Brahe poisoned by Hg?

Hg determination by RNAA

Mercury (²⁰³Hg, t_{1/2}=46.6 d)

RNAA of remains of Tycho Brahe (hair, beard hair, bones)

K.L. Rasmussen, J. Kučera, L. Skytte, J. Kameník et al., Archaeometry 55 (2013) 1187–1195

Geo- and cosmochemical studies

INAA/IPAA of tektites & impact glasses

- Natural glasses produced during large meteoritic impacts
- *Tektites* ejected from parent crater to distant strewn fields
- Moldavites, irghizites, Australasian tektites and Libyan
 Desert Glass systematically studied at NPI by INAA/IPAA since
 2007

14

Moldavites: unconventional source components

• Parent impact structure – crater Ries (14.7 Ma, Ø 25 km)

- Precursors: Miocene sedimentary rocks / sediments composed of quartz sands, clay and soil, and **Ca-Mg component** carbonates?
- New substrewn field the Cheb Basin (CBM)
- New theory **Ca-Mg component assigned to ash from** biomass burned at the early stage of the meteoritic impact
- Évidenced by, e.g., correlation between K/Na, Ca/Sr, Ca/Ba gessential/nonessential elegent differentiation in plants) and U/Th ratios, recently by C³⁰ isotopic analysis

Source materials and parent crater for Australasian tektites (AAT)

- Largest tektite strewn field with unknown location of parent crater
- Set of AAT from various parts of the strew field analyzed at NPI ⇒ origin of AAT from Chinese loess and its precursors (desert sand) should be revisited based on geochemical and isotopic constraints
- Criticism of currently proposed crater location in Indochina with ambiguous definition of target materials \Rightarrow with the aid of global gravity data, hypothetical crater location in

Multielemental analysis of meteorites by INAA, RNAA and IPAA Morávka meteorite fall on on May 6, 2000

The set of up to 42 elements determined by INAA, RNAA and IPAA in meteorites helps in their classification

Meteorite/Fall or Found	Classification
Morávka/6 May 2000	H5 chondrite
Jesenice/9 April 2009	L6 chondrite
Rumanová/1994	H5 chondrite
Uhrovec/2012	L6 chondrite
Veľké Borové/1895	L5 to L4 chondrite
Košice/ 28 February 2010	H5 chondrite
Chelyabinsk/15 February 2013	LL5 chondrite

Material science/Basic physical problems

Search for neutrinoless double beta-decay

Determination of long-lived radionuclides ²³²Th and ²³⁸U in materials for **SuperNEMO experiment** related to background constraints for neutrinoless double beta-decay searches. Underground installations require detectors made of radioactively pure materials with **minimum contamination by natural radionuclides**.

Demonstrator: The 7-kg ⁸²Se source foil is located in the centre, tracking chambers and calorimeters are on both side of the foil.

Need for ultra low-level determination of ²³²Th and ²³⁸U in:

- isotope source (⁸²Se)
- copper

RNAA for long-lived natural radionuclides

²³²Th ($t_{1/2}$ = 1.40x10¹⁰ y), ²³⁸U ($t_{1/2}$ = 4.47x10⁹ y)

$$(A) = \lambda N = \frac{\ln 2}{T_{1/2}} N$$

Decay counting $A_{\rm l} = N_{\rm l} \lambda_{\rm l} \gamma_{\rm l} \varepsilon_{\rm l}$

Atom counting by NAA (*A₁(n,
$$\gamma$$
)^(x+1)A₂)

$$A_2 = N_1 \gamma_2 \varepsilon_2 SDC(G_{th} \Phi_0 \sigma_0 + G_e \Phi_e I_0(\alpha))$$

Advantage factor AF=
$$\frac{\gamma_2 \varepsilon_2}{\lambda_1 \gamma_1 \varepsilon_1} (\Phi_{th} \sigma_0 + \Phi_{epi} I_0) (1 - e^{-\lambda_2 t_i}) e^{-\lambda_2 t_d} (\frac{1 - e^{-\lambda_2 t_c}}{\lambda_2 t_c})$$

AFs for NAA of some long-lived radionuclides

Nuclide pair	t _{1/2} (1)	AF
²³⁸ U/ ²³⁹ U	4.468 x 10 ⁹ y	7.0 x 10 ⁶
²³⁸ U/ ²³⁹ Np	4.468 x 10 ⁹ y	8.0 x 10 ⁵
²³² Th/ ²³³ Pa	1.40 x 10 ¹⁰ y	4.0 x 10 ⁵
²³⁰ Th/ ²³¹ Th	7.54 x 10 ⁴ y	27
²³⁷ Np/ ²³⁸ Np	2.144 x 10 ⁶ y	640
²³¹ Pa/ ²³² Pa	3.276 x 10 ⁴ y	106

 Φ_{th} =10¹³ cm⁻², s⁻¹, Φ_{epi} =5x10¹¹ cm⁻² s⁻¹ $\epsilon_1(\alpha)$ =25 %, $\epsilon_2(\gamma)$ =5 mL fractions in well-type HPGe detector

A.R. Byrne, L. Benedik, Czech J. Phys. 49, S1 (1999) 263-270

Detection limits of ²³²Th and ²³⁸U

Nuclide	Half-life	Detection limit, mBq		
		Radiometric ^a	ICP-MS ^b	RNAA ^c
²³² Th	1.40E+10 y	0.1	2 x 10 ⁻³	8 x 10 ⁻⁵ (for Cu) 4 x 10 ⁻⁴ (for ⁸² Se)
²³⁸ U	4.468E+9 y	0.1	2 x 10 ⁻³	2 x 10 ⁻⁴ (for Cu) 4 x 10 ⁻⁴ (for ⁸² Se)

- ^a α -spectrometry
- ^b 3 mL of solution used for measurement
- ^c U: Φ_{th} =3x10¹³ cm⁻² s⁻¹, t_i=1 min, t_d=30-35 min, t_c= 1 h, 150 cm³ well-type HPGe detector Th: Φ_{th} =4x10¹³ cm⁻² s⁻¹, t_i=20 h, t_d=35 d, t_c=4 h, 150 cm³ well-type HPGe detector

^{a,b} – X. Hou et al., J. Radioanal. Nucl. Chem., 2016, DOI 10.1007/s/10967-016-4741-5

Determination of U via ²³⁹U by RNAA

RNAA results for ²³²Th and ²³⁸U

Matrix	²³² Th (µBq/g)	²³⁸ U (µBq/g)
Cu	1.6 ± 0.2	< 1.6
⁸² Se	7.7 ± 1.2	< 12

Radionuclidic impurities in RNAA fractions

Matrix	²³³ Pa	²³⁹ U
Cu	⁵⁹ Fe, ¹²⁴ Sb	⁶⁴ Cu, ⁶⁶ Cu
⁸² Se	⁷⁵ Se ¹³⁰ Te(n, γ) ¹³¹ Te (T _{1/2} =1.26 d) → ¹³¹ I (T _{1/2} =8.04 d, E _γ =364.5 keV)	⁸² Se(n,γ) ⁸³ Se (T _{1/2} =22.3 min)→ ⁸³ Br(T _{1/2} =2.4 h, E _γ =529.6 keV)

J. Kučera, J. Kameník, P.P. Povinec, J. Radioanal. Nucl. Chem., 311 (2017) 1299–1307

Thank you for your attention!

