"New Trends in Thermal Phases of QCD", Apr 14-17, 2023

Dimension of Dirac modes in IR phase of strong interaction

Yi-Bo Yang

Collaborators: Xiao-Lan Meng, Peng Sun, Andrei Alexandru, Ivan Horvath, Keh-Fei Liu, and Gen Wang

Outline

0

Dimension of Dirac Eigenvectors...

Dirac spectrum above crossover;

...and its distribution.

$$\rho(\lambda, V) = \frac{\Sigma}{\pi} (1 + \frac{N_f^2 - 4}{N_f} \frac{\lambda \Sigma}{32\pi F^4}) + \mathcal{O}(\frac{1}{\sqrt{V}}, m_q^{\text{sea}}, \lambda^2)$$

P. H. Damgaard and H Fukaya, JHEP01(2009),052, 0812.2797

at zero temperature

- 2+1 flavors DWF ensembles at physical light quark masses and two lattice spacings.
- Dirac spectrum based on the exact eigensolver of the overlap fermion.
- Corresponds to the chiral condensate in proper limits: $-\langle \bar{\psi}\psi \rangle = \pi \lim_{\lambda \to 0} \lim_{m_l \to 0} \lim_{V \to \infty} \rho(\lambda, V, m_l).$

- 2+1 flavors HISQ ensembles at physical light quark masses and 2-3 lattice spacings:
- Dirac spectrum with unitary HISQ action.
- $\rho(\lambda \to 0)$ becomes lower with higher temperature.

above the crossover temperature

• $\rho(\lambda)$ develops a peaked structure at small λ , which becomes sharper as $a \to 0$.

above the crossover temperature

- 2+1 flavors HISQ ensembles at physical light quark masses and three lattice spacings:
- Dirac spectrum with unitary HISQ action.
- $\rho(\lambda \rightarrow 0, m_l)$ develops an $\mathcal{O}(m_1^2)$ peaked structure.

300

• U(1) anomaly in the chiral limit would remain above T_c .

H.-T. Ding, et.al., Phys.Rev.Lett.126 (2021) 082001

- Both the quenched and 2+1 flavor cases:
- The IR peak seems to be much larger than the unitary HISQ case.

above the crossover temperature

• Dirac spectrum using overlap fermion shows obvious IR peak at T > 200 MeV.

A. Alexandru, I. Horvath., Phys.Rev.D 100 (2019) 094507

to that using staggered fermion sea.

above the crossover temperature

Dirac spectrum using overlap valence fermion and clover sea is somehow similar

Possible new phase

- Above $T_{\rm IR}$: $\rho(\lambda) \propto 1/\lambda$ at $\lambda < T$ and then scale invariance at long distance;

of thermal QCD

• Above $T_{\rm UV}$: $\rho(\lambda) \sim 0$ at $\lambda < T$ and then only a weakly interacting gluon plasma remains.

A. Alexandru, I. Horvath, Phys.Rev.D 100 (2019) 094507

Possible new phase

• Above T_{IR} : $\rho(\lambda) \propto 1/\lambda$ at $\lambda < T$ and then scale invariance at long distance;

• In such a case,
$$\sigma(\lambda, T) \equiv \int_{\lambda}^{T} \rho(\omega) d\omega \propto \ln \frac{\lambda}{T} d\sigma$$

But if the IR peak suffers from the action sensitivities, is there any other criteria? \bullet

of thermal QCD

wn to some $\lambda_{\rm IR} \propto 1/L$.

 β =4.30, *T*=220MeV, *L*=32(2.4fm)

 λ (MeV)

above the crossover temperature

- 2 flavors DWF ensembles with different light quark masses.
- The IR peak using overlap valence fermion is sizable before reweighting;
- That using DWF is much smaller;
- And almost vanishes if we use the overlap valence fermion and reweight the DWF sea to overlap sea.

and mixed action effects

- The difference in the IR peak with different setups would be recognized as mixed action or taste mixing effect.
- Both the mixed action and taste mixing effects would be $\mathcal{O}(a^4)$, based on present results with various valence and sea actions at multiple lattice spacings.
- Proper continuum extrapolation should be essential to reach the final answer.

at different lattice spacings

Outline

0

• Dimension of Dirac Eigenvectors...

Dirac spectrum above crossover;

...and its distribution.

 The overlap fermion operator satisfies the Ginsburg-Wilson,

$$\gamma_5 D_{ov} + D_{ov} \gamma_5 = \frac{a}{\rho} D_{ov} \gamma_5 D_{ov}$$

• It can be rewritten into

$$D_{ov}^{-1}\gamma_5 + \gamma_5 D_{ov}^{-1} = \frac{a}{\rho}\gamma_5, \quad (D_{ov}^{-1} - \frac{1}{2\rho})\gamma_5 + \gamma_5 (D_{ov}^{-1} - \frac{1}{2\rho})$$

• Thus the chiral fermion operator satisfying $\gamma_5 D_c = -D_c \gamma_5$ can be defined through the overlap fermion operator:

$$D_{c} + m_{q} = \frac{D_{ov}}{1 - \frac{1}{2\rho}D_{ov}} + m_{q}, D_{ov} = \rho(1 + \gamma_{5}\epsilon_{ov}(\rho)).$$

and overlap fermion

• The eigenvalue of overlap fermion is in a circle of $|\lambda_{ov}/\rho - 1| = 1;$

 After the projection $\lambda = \lambda_{ov}/(1 - \lambda_{ov}/(2\rho)), \lambda$ becomes pure imaginary.

and overlap fermion

- The non-zero and finite modes of the overlap fermion are paired, $D_{ov}v_{ov} = \lambda_{ov}v_{ov}$, $D_{ov}\gamma_5v_{ov} = \lambda_{ov}^*\gamma_5v_{ov}$;
- And then we have $Dv = \lambda v$, $D\gamma_5 v = \lambda^* \gamma_5 v = -\lambda \gamma_5 v$, $Dv_{L/R} = \lambda v_{R/L}$ and also $|v_L| = |v_R|$;

• The exact zero modes have given chiral sector, $1 = |v_{L/R}| \gg |v_{R/L}| = 0, \text{ and } \sum (v_{\lambda})^{\dagger} \gamma_5 v_{\lambda} = Q.$

Thus the exact zero modes and non-zero \bullet modes of the overlap fermion are quite different from each other.

and overlap fermion

- The non-zero and finite modes of the overlap • All the modes of the staggered fermion are also fermion are paired, $D_{ov}v_{ov} = \lambda_{ov}v_{ov}$, $D_{ov}\gamma_5 v_{ov} = \lambda_{ov}^* \gamma_5 v_{ov}$; paired, $D^{st}v^{st} = \lambda^{st}v^{st}$, $D^{st}\gamma_5v^{st} = -\lambda^{st}\gamma_5v^{st}$;
- And then we have $Dv = \lambda v$, $D\gamma_5 v = \lambda^* \gamma_5 v = -\lambda \gamma_5 v$, • $v_{L/R}^{st}$ corresponds to even/odd sites of the $Dv_{L/R} = \lambda v_{R/L}$ and also $|v_L| = |v_R|$; eigenvector, and then $Dv_{L/R} = \lambda v_{R/L}$ is quite natural.

- The exact zero modes have given chiral sector, • But $|v_L|$ and $|v_R|$ on each configuration can be $1 = |v_{L/R}| \gg |v_{R/L}| = 0, \text{ and } \sum (v_{\lambda})^{\dagger} \gamma_5 v_{\lambda} = Q.$ different, to allow the topological charge $Q^{\text{st}} \equiv \sum (v_{\lambda}^{\text{st}})^{\dagger} \gamma_5 v_{\lambda}^{\text{st}} = \sum (|v_{\lambda,L}|^2 - |v_{\lambda,R}|^2) \text{ to be non-}$ $-iM < \lambda < iM$ $-iM < \lambda < iM$ zero.
- Thus the exact zero modes and non-zero modes of the overlap fermion are quite different from each other.

overlap fermion v.s. staggered fermion

C. Bonanno, et.al., JHEP 10 (2019) 187

of the eigenvectors

•
$$V(L) = (L/a)^3/(aT), N_* = \sum_{x \in V} \min[V|\psi_{\lambda}(x)]$$

and $\langle N_* \rangle_{L \to \infty} \propto L^{d_{\mathrm{IR}}(\lambda)}$ with T is unchanged.

- Reduce the contribution from the black region $(V\psi_{\lambda}^{\dagger}(x)\psi_{\lambda}(x) \ge 1)$ into 1, and add the residual contributions from the other region.
- When *L* becomes larger:

1.
$$d_{IR} = 3$$
 if $\frac{Black region}{Entire region}$ keeps unchanged;
2. $d_{IR} < 3$ if $\frac{Black region}{Entire region}$ becomes smaller.

of the eigenvectors

$$f_* \equiv \langle N_* \rangle / V = \sum_{x \in V} \min[|\psi_\lambda(x)|^2, 1/V]$$

•
$$f_*(L)_{L\to\infty} \propto L^{d_{\mathrm{IR}}-3}$$
.

- When *L* becomes larger:
- 1. $d_{IR} = 3$ if f_* keeps finite;
- 2. $d_{IR} < 3$ if f_* approaches zero.

A. Alexandru, I. Horvath, Phys. Rev.Lett. 127(2021),052303

in the quenched case

- $N_f = 0, T = 331$ MeV.
- When *L* becomes larger:
- 1. f_* is around 0.5 for $\lambda \sim 850$ MeV;
- 2. f_* approaches **zero for non-zero** λ < 800 MeV;
- 3. f_* saturates to a small finite value for the exact zero modes $\lambda = 0$.

in the quenched case

•
$$N_f = 0, T = 331$$
 MeV.

- $d_{\rm IR} = 3$ for the eigenvector with $\lambda = 0$ and $\lambda \geq 840$ MeV.
- $d_{\rm IR} \rightarrow 2$ for the non-zero mode cases with $\lambda \rightarrow 0$.
- $d_{\rm IR} = 1$ for the cases with $\lambda \in [100, 400]$ MeV.

A. Alexandru, I. Horvath, Phys. Rev.Lett. 127(2021),052303

in the 2+1 flavor case

- $N_f = 2 + 1, T = 234$ MeV.
- **Overlap valence fermion and Clover** fermion sea
- $d_{\text{IR}} = 3$ for the eigenvector with $\lambda = 0$ and $\lambda \geq 300$ MeV.
- $d_{\rm IR} \rightarrow 2$ for the non-zero mode cases with $\lambda \rightarrow 0.$
- $d_{\rm IR} = 1$ for the cases with $\lambda \in [10,200]$ MeV.

in the 2+1 flavor case

$N_f = 0, T = 331 \text{ MeV}$

A. Alexandru, I. Horvath, Phys. Rev.Lett. 127(2021),052303

Outline

0

Dimension of Dirac Eigenvectors...

Dirac spectrum above crossover;

...and its distribution.

Clover ensembles

with multiple lattice spacings and pion masses

- Tadpole improved Clover fermion with stout smearing;
- Tadpole improved Symanzik gauge.
- FLAG green-star criteria can be satisfied with the present ensembles.
- Major contributors: P. Sun, L. Liu, YBY, W. Sun,...

	C11P29Ss	C11P29S	C11P29M	C11P22M	C11P22L	C11P14L	C08P30S	C08P30M	C08P22S	C08P22M	C06P30S
$L^3 \times T$	$24^3 \times 64$	$24^3 \times 72$	$32^3 \times 64$	$32^3 \times 64$	$48^3 \times 96$	$48^3 \times 96$	$32^3 \times 96$	$48^3 \times 96$	$32^3 \times 64$	$48^3 \times 96$	$48^3 \times 144$
$10/g^{2}$	6.20						6.41				6.72
						-0.2825					
						-0.2820					
						-0.2815					
				-0.2790	-0.2790				-0.2320	-0.2320	
$m_l^{ m b}$			-0.2780	-0.2780	-0.2780			-0.2307	-0.2307	-0.2307	
	-0.2770	-0.2770	-0.2770	-0.2770	-0.2770		-0.2295	-0.2295	-0.2295	-0.2295	-0.1850
	-0.2760	-0.2760	-0.2760				-0.2288	-0.2288			-0.1845
	-0.2750	-0.2750					-0.2275				-0.1840
	-0.2400	-0.2400	-0.2400	-0.2400	-0.2400	-0.2400	-0.2050	-0.2050	-0.2050	-0.2050	-0.1700
$m_s^{ m b}$	-0.2355	-0.2355	-0.2355	-0.2355	-0.2355	-0.2355	-0.2030	-0.2030	-0.2030	-0.2030	-0.1694
	-0.2310	-0.2310	-0.2310	-0.2310	-0.2310	-0.2310	-0.2010	-0.2010	-0.2010	-0.2010	-0.1687
	0.4780	0.4780	0.4780	0.4780	0.4780	0.4780	0.2326	0.2326	0.2326	0.2326	0.0770
$m_c^{ m b}$	0.4800	0.4800	0.4800	0.4800	0.4800	0.4800	0.2340	0.2340	0.2340	0.2340	0.0780
	0.4820	0.4820	0.4820	0.4820	0.4820	0.4820	0.2354	0.2354	0.2354	0.2354	0.0790
$\delta_{ au}$	1.0	0.7	0.7	0.7	0.7	1.0	0.5	0.5	0.5	0.5	1.0
n_{\min}		4050	11000	4100	1000	1600	1000	2690	13500	1600	1000
$n_{ m max}$		48000	35050	26600	5050	2200	26200	6700	36400	6060	4070
u_0^{I}	0.855453	0.855453	0.855453	0.855520	0.855520	0.855548	0.863437	0.863473	0.863488	0.863499	0.873378
v_0^{I}	0.951479	0.951479	0.951479	0.951545	0.951545	0.951570	0.956942	0.956984	0.957017	0.957006	0.963137
u_0		0.855440	0.855422			0.855539	0.863463				0.873373
v_0		0.951463	0.951444			0.951561	0.956971				0.963135
$w_0 a$											-
							•				

TABLE I. Lattice size $L^3 \times T$, gauge coupling $10/g^2$, bare quark masses $m_{l,s,c}^{\rm b}$, tadpole improvement factors u_0/v_0 and scale parameter w_0 of the ensembles used in this work. The bare light and starnge quark masses $m_{l,s}^{b}$ with the bold font on each ensemble are the unitary quark masses, and the other values of $m_{l,s,c}^{b}$ are those used for the valence quark propagators. The values $u_0^{\rm I}$ and $v_0^{\rm I}$ are the tadpole improvement factors used in the gauge and fermion actions, respectively; and $u_0, v_0, w_0 a$ are those measured from the realistic configurations generated using the Paramters here.

CLQCD, in preparation

T = 234 MeV

X. Meng, et.al, χ QCD &CLQCD, in preparation

at different spacial size

- Locating the position $w = w_0 \equiv \{x_0, y_0, z_0, t_0\}$ where $|\psi(\omega)|^2$ takes the maximum;
- Fix $z = z_0$ and $t = t_0$ and draw the distribution in the x-y plane.
- Black region corresponds to where $|\psi(\omega)|^2 \ge 1/V$;
- $|\psi(\omega)|^2$ is smaller when the color is colder.

T = 234 MeV

X. Meng, et.al, χ QCD &CLQCD, in preparation

at different spacial size

* T = 234 MeV

X. Meng, et.al, χ QCD &CLQCD, in preparation

- we find that the following functional form $f_* = c_0(\lambda) L^{d_{\mathrm{IR}}(\lambda) - 3} e^{-c_1(\lambda)/L}$ describe the data fairly well for all the λ with L > 3.0 fm.
- The fit is still fine when L <3.0 fm if $\lambda > 10$ MeV or so;
- But does not work for the zero modes and near-zero modes.

sizes:

 $\log[N^*(L;\lambda)/N^*($ $\log[s]$ W

• volume limit.

X. Meng, et.al, χ QCD &CLQCD, in preparation

of the eigenvectors

Based on the functional form $f_* = c_0(\lambda) L^{d_{\mathrm{IR}}(\lambda) - 3} e^{-c_1(\lambda)/L},$ we can define the dimension $d_{\rm IR}(\bar{L};\lambda)$ at effective spacial

$$\frac{(L/s;\lambda)]}{L} = d_{\rm IR}(\lambda) - \frac{c_1(\lambda)}{\bar{L}}$$

with $\bar{L} \equiv L\log(s)/(s-1)$.

It provides a straightforward illustration on how $d_{IR}(\bar{L};\lambda)$ approaches to its infinite

Measure-based dimension T = 234 MeV

• $f_*(\lambda)$ converges to a convex curve at $\lambda \to 0$, which is significantly different from the concave behavior of the exact zero mode with $\lambda = 0$.

at different eigenvalue regions

• The $f_*(\lambda \to 0)$ is larger than $f_*(\lambda = 0)$ until L > 020 fm, and approaches zero when $L \rightarrow \infty$.

Measure-based dimension T = 234 MeV

• $f_*(\lambda)$ changes smoothly in the range of 20 MeV $\leq \lambda \leq 200$ MeV.

at different eigenvalue regions

And results in the similar effective dimension \bullet $d_{\rm IR} = 1.$

Measure-based dimension T = 234 MeV

• $f_*(\lambda)$ changes also smoothly in the range of 280 MeV $\leq \lambda \leq 330$ MeV.

at different eigenvalue regions

• And makes the d_{IR} approaches 3 without any visible discontinuity.

Distribution

X. Meng, et.al, χ QCD &CLQCD, in preparation

at different temperatures

T = 234 MeV

fm	$3.4\mathrm{fm}$	$4.2\mathrm{fm}$	$4.9\mathrm{fm}$	$6.7\mathrm{fm}$	$10.1{ m fm}$	
						$\lambda = 0 { m MeV}$
						$\lambda = 0.22~{\rm MeV}$
						$\lambda = 100 \; {\rm MeV}$
						$\lambda=330\;{\rm MeV}$

T = 0

X. Meng, et.al, χ QCD &CLQCD, in preparation

at different temperatures

T = 234 MeV

Summary

- We show that the important pattern of low dimensions seen in pure-glue QCD is also present in "real-world QCD", namely in $N_f = 2 + 1$ ensembles with physical light and strange quark masses at a=0.105 fm:
- 1. $d_{\rm IR} = 3$ for the exact zero modes with $\lambda = 0$.
- 2. $d_{\text{IR}} \rightarrow 2$ for the non-zero mode cases with $\lambda \rightarrow 0$.
- 3. $d_{\text{IR}} = 1$ for the cases with $\lambda \in [10,200]$ MeV.
- 4. $d_{IR} \rightarrow 3$ smoothly at $\lambda \sim 300$ MeV, which is lower than where $\rho(\lambda; T = 234 \text{ MeV}) \sim \rho(\lambda; T = 0)$.

