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Introduction

2 + 1 flavor QCD , since mu,d � ΛQCD the UL(2)× UR(2) is
minimally broken.

The breaking of non-singlet part of this chiral symmetry i.e.
SUA(2)× SUV (2)→ SUV (2) of QCD happens below
Tc = 156.5± 1.5 MeV [HotQCD coll, 18].
However UA(1) part of the chiral symmetry is anomalous
hence it is not clear whether it is effectively restored along
with its non-singlet part.
There are some evidence that show UA(1) remains effectively
broken at Tc in 2 + 1 flavor QCD with physical quark mass m
[ A. Bazavov et al., 12, V. Dick et al., 15] even when m→ 0
[ O. Kaczmarek, L. Mazur, and S. Sharma, 21] but also there are some
contrary results
[ S. Aoki et. al., JLQCD coll, 15, 17, 21, B. Brandt et. al., 16, T. W. Chiu, 13].
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Motivation

The eigenvalue spectrum of Dirac operator contains valuable
information about the fundamental properties of Quantum
Chromodynamics (QCD).

Does non singlet part of chiral symmetry and it’s singlet part is
effectively restored at the same T . Can we explain it in terms
of the eigenvalues?
The eigenvalue spectrum on the lattice depends on the choice
of the fermion discretization. What will happen with staggered
fermions?
It will be interesting to check the properties of the eigenvalue
spectrum by carefully performing a continuum extrapolation,
in the large volume limit.
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Technical details

In this work we use the gauge configurations for 2 + 1 flavor
QCD with physical quark masses, generated by the HotQCD
collaboration using Highly Improved Staggered quark (HISQ)

The Goldstone pion mass is set to 140 MeV and the kaon mass
is 435 MeV for these configurations.
We focus on five different temperatures, one below Tc and
others above Tc .
At each T = 1

Nτa
we consider Nτ = 8, 12, 16 to take the

continuum limit.
The spatial lattice sites was chosen to be Ns = 4Nτ such that
the spatial volume in each case was about 4 fm.
We next measure 60− 200 eigenvalues of the massless HISQ
Dirac matrix per configuration.
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Our results: Eigenvalue density as a function of T
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Characterizing Bulk modes

The bulk eigenvalue density is characterized as
[ S. Aoki, H. Fukaya, and Y. Taniguchi, 12]

ρ(λ)

T 3 =
ρ0

T 3 +
λ

T
.
c1(T ,m)

T 2 +
λ2

T 2 .
c2(T ,m)

T
+
λ3

T 3 c3(T ,m) .

The coefficients c1,2,3 can in general be a function of the
temperature T and the light-quark mass m.

Earlier study assuming the restoration of singlet and
non-singlet part for upto 6-point functions in
scalar-pseudoscalar correlators gives [Aoki et.al. 2012] c1,2 = O(m2)
and c3 = const +O(m2).

Ravi Shanker Slide 6 of 22



Characterizing Bulk modes

The bulk eigenvalue density is characterized as
[ S. Aoki, H. Fukaya, and Y. Taniguchi, 12]

ρ(λ)

T 3 =
ρ0

T 3 +
λ

T
.
c1(T ,m)

T 2 +
λ2

T 2 .
c2(T ,m)

T
+
λ3

T 3 c3(T ,m) .

The coefficients c1,2,3 can in general be a function of the
temperature T and the light-quark mass m.

Earlier study assuming the restoration of singlet and
non-singlet part for upto 6-point functions in
scalar-pseudoscalar correlators gives [Aoki et.al. 2012] c1,2 = O(m2)
and c3 = const +O(m2).

Ravi Shanker Slide 6 of 22



Characterizing Bulk modes

The bulk eigenvalue density is characterized as
[ S. Aoki, H. Fukaya, and Y. Taniguchi, 12]

ρ(λ)

T 3 =
ρ0

T 3 +
λ

T
.
c1(T ,m)

T 2 +
λ2

T 2 .
c2(T ,m)

T
+
λ3

T 3 c3(T ,m) .

The coefficients c1,2,3 can in general be a function of the
temperature T and the light-quark mass m.

Earlier study assuming the restoration of singlet and
non-singlet part for upto 6-point functions in
scalar-pseudoscalar correlators gives [Aoki et.al. 2012] c1,2 = O(m2)
and c3 = const +O(m2).

Ravi Shanker Slide 6 of 22



Characterizing Bulk modes
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We perform a fit to the bulk part i.e. all eigenvalues λ > λ0 with
ρ(λ)
T3 = λ

T .
c1(T ,m)

T2 + ρ0
T3 .

Taking continuum (∼ 1/N2
τ ) extrapolation of c1 at different T , we

get a m-independent part of the slope c1(m,T )/T 2 = 16.8(4)→ in
addition to O(m2) found earlier.
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Density of near-zero modes

Near zero modes distribution at zero temperature from chiral
random matrix theory for Nf = 2 flavors and zero topological
charge sector is distributed according to [G. Akemann, 2016]

ρ(cλ) =
cλ

2
[
J2
2 (cλ)− J3(cλ)J1(cλ)

]
, c = 〈0|ψ̄ψ|0〉V /T .
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When is UA(1) effectively restored?

Since the flavor singlet part of the chiral symmetry is anomalous it
has no corresponding order parameter.

To study if UA(1) is effectively restored along with the non-singlet
part, it has been suggested [ Shuryak, 93] to look at the degeneracies of
the integrated two-point correlators of mesons i.e., χπ − χδ.
These quantities are defined as χπ =

∫
d4x 〈πi (x)πi (0)〉 and

χδ =
∫
d4x 〈δi (x)δi (0)〉

It is also important to look at higher-point
correlators [ S. Aoki, H. Fukaya, and Y. Taniguchi, 12].

In this work we measure (χπ − χδ)/T 2 at the four different
temperatures above Tc , and perform a ∼ 1/N2

τ continuum
extrapolation at each temperature.
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When is UA(1) effectively restored?
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UA(1) is effectively restored at temperature ∼ 1.14Tc

Ravi Shanker Slide 10 of 22



When is UA(1) effectively restored?

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(χ
π
 -

 χ
δ
)/

T
2

1/Nτ
2

162 MeV
166 MeV
171 MeV
176 MeV

This observable receives 99% contribution from the near zero
eigenvalues for Nτ = 16.
A linear extrapolation of the intercept gives a temperature around
1.14 Tc when this observable goes to zero.

UA(1) is effectively restored at temperature ∼ 1.14Tc

Ravi Shanker Slide 10 of 22



When is UA(1) effectively restored?

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(χ
π
 -

 χ
δ
)/

T
2

1/Nτ
2

162 MeV
166 MeV
171 MeV
176 MeV

This observable receives 99% contribution from the near zero
eigenvalues for Nτ = 16.
A linear extrapolation of the intercept gives a temperature around
1.14 Tc when this observable goes to zero.
UA(1) is effectively restored at temperature ∼ 1.14Tc

Ravi Shanker Slide 10 of 22



Comparison with earlier works

Studies with chiral fermions but on relatively small volumes
and finite lattice spacings have reported effective restoration of
UA(1) at Tc .
[ S. Aoki et. al., JLQCD coll, 15, 17, 21, B. Brandt et. al., 16, T. W. Chiu, 13]

Earlier studies on larger volumes but finite lattice spacing find
that UA(1) does not get restored at T ∼ 1.5 Tc

[ A. Bazavov et al., 12, V. Dick et al., 15].

Beyond this temperature the topological susceptibility follows
a T -dep. consistent with dilute instanton gas model → leads
to a trivial restoration of UA(1)
[ Bonati et. al., 15, P. Petreczky, H,-P Schadler, S. Sharma, 16, Borsanyi et. al., 16].

Our study points towards an earlier effective restoration of
UA(1) due to non-trivial interplay between interactions and
disorder in QCD.

Ravi Shanker Slide 11 of 22



Comparison with earlier works

Studies with chiral fermions but on relatively small volumes
and finite lattice spacings have reported effective restoration of
UA(1) at Tc .
[ S. Aoki et. al., JLQCD coll, 15, 17, 21, B. Brandt et. al., 16, T. W. Chiu, 13]

Earlier studies on larger volumes but finite lattice spacing find
that UA(1) does not get restored at T ∼ 1.5 Tc

[ A. Bazavov et al., 12, V. Dick et al., 15].

Beyond this temperature the topological susceptibility follows
a T -dep. consistent with dilute instanton gas model → leads
to a trivial restoration of UA(1)
[ Bonati et. al., 15, P. Petreczky, H,-P Schadler, S. Sharma, 16, Borsanyi et. al., 16].

Our study points towards an earlier effective restoration of
UA(1) due to non-trivial interplay between interactions and
disorder in QCD.

Ravi Shanker Slide 11 of 22



Comparison with earlier works

Studies with chiral fermions but on relatively small volumes
and finite lattice spacings have reported effective restoration of
UA(1) at Tc .
[ S. Aoki et. al., JLQCD coll, 15, 17, 21, B. Brandt et. al., 16, T. W. Chiu, 13]

Earlier studies on larger volumes but finite lattice spacing find
that UA(1) does not get restored at T ∼ 1.5 Tc

[ A. Bazavov et al., 12, V. Dick et al., 15].

Beyond this temperature the topological susceptibility follows
a T -dep. consistent with dilute instanton gas model → leads
to a trivial restoration of UA(1)
[ Bonati et. al., 15, P. Petreczky, H,-P Schadler, S. Sharma, 16, Borsanyi et. al., 16].

Our study points towards an earlier effective restoration of
UA(1) due to non-trivial interplay between interactions and
disorder in QCD.

Ravi Shanker Slide 11 of 22



Comparison with earlier works

Studies with chiral fermions but on relatively small volumes
and finite lattice spacings have reported effective restoration of
UA(1) at Tc .
[ S. Aoki et. al., JLQCD coll, 15, 17, 21, B. Brandt et. al., 16, T. W. Chiu, 13]

Earlier studies on larger volumes but finite lattice spacing find
that UA(1) does not get restored at T ∼ 1.5 Tc

[ A. Bazavov et al., 12, V. Dick et al., 15].

Beyond this temperature the topological susceptibility follows
a T -dep. consistent with dilute instanton gas model → leads
to a trivial restoration of UA(1)
[ Bonati et. al., 15, P. Petreczky, H,-P Schadler, S. Sharma, 16, Borsanyi et. al., 16].

Our study points towards an earlier effective restoration of
UA(1) due to non-trivial interplay between interactions and
disorder in QCD.

Ravi Shanker Slide 11 of 22



Chiral Ward identity

In the chiral symmetry restored phase, χσ = χπ and χδ = χη
hence one obtaines χπ − χδ = 4χ5,disc.

Using chiral Ward identities it is known that χ5,disc = χt/m
2

where χt is the topological susceptibility of QCD. This allows
relating the UA(1) breaking parameter to the topological
susceptibility [ L. Mazur, Ph.D thesis, 2021] through the relation,
1/4(χπ − χδ)m2

l /T
4 = χt/T

4.
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Distribution of smallest eigenvalue at different T

For a chiral random matrix ensemble for Nf = 2 (at zero
temperature) the lowest eigenvalue is distributed according
to [ Akemann, 2016],

P(x) =
x

2
e−

x2
4
[
J2
2 (x)− J3(x)J1(x)

]
, x = cλmin .
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The level spacing distribution for bulk modes

To study the universal properties of the eigenvalue level
spacing fluctuations one has to remove the system dependent
mean. This is done by a method called unfolding.

A fit to the unfolded level-spacing distribution P(s) gives a
level repulsion between the small s bulk modes that is
quadratic similar to that of random matrices belonging to the
Gaussian unitary ensemble.

Ravi Shanker Slide 14 of 22



The level spacing distribution for bulk modes

To study the universal properties of the eigenvalue level
spacing fluctuations one has to remove the system dependent
mean. This is done by a method called unfolding.

A fit to the unfolded level-spacing distribution P(s) gives a
level repulsion between the small s bulk modes that is
quadratic similar to that of random matrices belonging to the
Gaussian unitary ensemble.

Ravi Shanker Slide 14 of 22



The level spacing distribution for bulk modes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

P
(s

)

Spacing s

T=162 MeV
N

τ
=16 
=12 

=8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

P
(s

)

Spacing s

T=166 MeV
N

τ
=16
=12
=8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

P
(s

)

Spacing s

T=171 MeV
N

τ
=16

= 12
=8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

P
(s

)

Spacing s

T=176 MeV
N

τ
=12
=8

Ravi Shanker Slide 15 of 22



The level spacing distribution for bulk modes

However for the Nτ = 16 lattices, due to the contamination
with the near-zero modes the fit of the tail is not good and
deviates from RMT prediction.

For small s, the level repulsion is still quadratic similar to GUE.
In order to account for the long tail of the spacing distribution
we fit it to P(s) ∼ s2 exp[(−αs)] which falls off slowly than s2

at large values of s parameterized by a fit parameter α.
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The level spacing distribution for bulk modes
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The ansatz fits the lattice data quite well → reminiscent of
mixing between the localized and delocalized modes at the
band-edge of Anderson-like systems.
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Why is UA(1) effectively restored only at T > Tc?

We remind that below Tc the bulk and near-zero modes
strongly overlap with each other where as for T > Tc the near
zero modes starts to appear.

Bulk modes are delocalized following chiral RMT density
distribution whereas the near-zero are localized following a
different eigenvalue distribution.

We find that at T ∼ 1.15Tc the bulk and near-zero modes
completely separates.

Incidentally this is the same temperature at which UA(1) is
effectively restored.
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Why is UA(1) effectively restored only at T > Tc?

At around 1.15 Tc the electrical conductivity in 2+1 flavor
QCD jumps from a tiny to a large value [ Amato et. al., 2014].

Similar phenomenon is observed for strongly-correlated electron
system where the separation of the localized modes from
delocalized results in jump of conductivity [ Altschuler et. al., 2006].

We can visualize quarks as many-body interacting state
moving in the disordered potential due to the instantons.

At low T . Tc instantons are strongly correlated resulting in
cRMT like distribution of the small eigenvalues. For
T & 1.15 Tc correlations between instantons weaken → leads
to separation of near-zero and bulk modes

Ravi Shanker Slide 19 of 22



Why is UA(1) effectively restored only at T > Tc?

At around 1.15 Tc the electrical conductivity in 2+1 flavor
QCD jumps from a tiny to a large value [ Amato et. al., 2014].

Similar phenomenon is observed for strongly-correlated electron
system where the separation of the localized modes from
delocalized results in jump of conductivity [ Altschuler et. al., 2006].

We can visualize quarks as many-body interacting state
moving in the disordered potential due to the instantons.

At low T . Tc instantons are strongly correlated resulting in
cRMT like distribution of the small eigenvalues. For
T & 1.15 Tc correlations between instantons weaken → leads
to separation of near-zero and bulk modes

Ravi Shanker Slide 19 of 22



Why is UA(1) effectively restored only at T > Tc?

At around 1.15 Tc the electrical conductivity in 2+1 flavor
QCD jumps from a tiny to a large value [ Amato et. al., 2014].

Similar phenomenon is observed for strongly-correlated electron
system where the separation of the localized modes from
delocalized results in jump of conductivity [ Altschuler et. al., 2006].

We can visualize quarks as many-body interacting state
moving in the disordered potential due to the instantons.

At low T . Tc instantons are strongly correlated resulting in
cRMT like distribution of the small eigenvalues. For
T & 1.15 Tc correlations between instantons weaken → leads
to separation of near-zero and bulk modes

Ravi Shanker Slide 19 of 22



Why is UA(1) effectively restored only at T > Tc?

At around 1.15 Tc the electrical conductivity in 2+1 flavor
QCD jumps from a tiny to a large value [ Amato et. al., 2014].

Similar phenomenon is observed for strongly-correlated electron
system where the separation of the localized modes from
delocalized results in jump of conductivity [ Altschuler et. al., 2006].

We can visualize quarks as many-body interacting state
moving in the disordered potential due to the instantons.

At low T . Tc instantons are strongly correlated resulting in
cRMT like distribution of the small eigenvalues. For
T & 1.15 Tc correlations between instantons weaken → leads
to separation of near-zero and bulk modes

Ravi Shanker Slide 19 of 22



Summary and Outlook

By carefully performing a continuum extrapolation we show that
UA(1) remains effectively broken in the chirally symmetric phase of
QCD for T . 1.15 Tc .

At T < Tc the interactions between instantons are strong enough
hence infrared eigenvalue density follows cRMT predictions.

At T > Tc the strength of interactions between the instantons
starts to weaken. Instanton tunneling probability also decreases
resulting in lowering of the height and width of near-zero peak.

Interplay of both these lead to separation of the near-zero peak out
of the bulk modes which also happens to be around T ∼ 1.15 Tc .

How different topological objects play a role in this phenomenon
needs to be further investigated.

Ravi Shanker Slide 20 of 22



Summary and Outlook

By carefully performing a continuum extrapolation we show that
UA(1) remains effectively broken in the chirally symmetric phase of
QCD for T . 1.15 Tc .

At T < Tc the interactions between instantons are strong enough
hence infrared eigenvalue density follows cRMT predictions.

At T > Tc the strength of interactions between the instantons
starts to weaken. Instanton tunneling probability also decreases
resulting in lowering of the height and width of near-zero peak.

Interplay of both these lead to separation of the near-zero peak out
of the bulk modes which also happens to be around T ∼ 1.15 Tc .

How different topological objects play a role in this phenomenon
needs to be further investigated.

Ravi Shanker Slide 20 of 22



Summary and Outlook

By carefully performing a continuum extrapolation we show that
UA(1) remains effectively broken in the chirally symmetric phase of
QCD for T . 1.15 Tc .

At T < Tc the interactions between instantons are strong enough
hence infrared eigenvalue density follows cRMT predictions.

At T > Tc the strength of interactions between the instantons
starts to weaken. Instanton tunneling probability also decreases
resulting in lowering of the height and width of near-zero peak.

Interplay of both these lead to separation of the near-zero peak out
of the bulk modes which also happens to be around T ∼ 1.15 Tc .

How different topological objects play a role in this phenomenon
needs to be further investigated.

Ravi Shanker Slide 20 of 22



Summary and Outlook

By carefully performing a continuum extrapolation we show that
UA(1) remains effectively broken in the chirally symmetric phase of
QCD for T . 1.15 Tc .

At T < Tc the interactions between instantons are strong enough
hence infrared eigenvalue density follows cRMT predictions.

At T > Tc the strength of interactions between the instantons
starts to weaken. Instanton tunneling probability also decreases
resulting in lowering of the height and width of near-zero peak.

Interplay of both these lead to separation of the near-zero peak out
of the bulk modes which also happens to be around T ∼ 1.15 Tc .

How different topological objects play a role in this phenomenon
needs to be further investigated.

Ravi Shanker Slide 20 of 22



Summary and Outlook

By carefully performing a continuum extrapolation we show that
UA(1) remains effectively broken in the chirally symmetric phase of
QCD for T . 1.15 Tc .

At T < Tc the interactions between instantons are strong enough
hence infrared eigenvalue density follows cRMT predictions.

At T > Tc the strength of interactions between the instantons
starts to weaken. Instanton tunneling probability also decreases
resulting in lowering of the height and width of near-zero peak.

Interplay of both these lead to separation of the near-zero peak out
of the bulk modes which also happens to be around T ∼ 1.15 Tc .

How different topological objects play a role in this phenomenon
needs to be further investigated.

Ravi Shanker Slide 20 of 22



Thanks
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