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Effective-Number Theory, brief review

Figure: Comparison of countings, (S), (B), (A)

! Our counting is realized by a funcion on vectors, and is a generalization of the ”+” binary operation !

Comparison of standard counting (left) and effective counting (right).
(S) - Symmetry - count independent of the order of counting.
(B) - Boundary conditions - if the weights are same, then both countings give the same results.
(A) - Additivity (bottom two lines).



Definitions

Definition. Set of counting vectors:

C = ∪ CN , where
CN = {(c1, c2, ..., cN) :

∑
ci = N, ci ≥ 0}

Example.

N ones: (1, ..., 1) ∈ C, (N − 1) zeros: (0, ..., 0,N) ∈ C

Effective numbers modeled by functions:

N : C → R

Example.

N(1, ..., 1) = N, N(0, ..., 0,N) = 1

The bottom Example is actually the boundary conditions (B).



Definition. Effective numbers.

N is the set of effective number functions N,
where N : C → R have the following properties.
For all M,N, for all 1 ≤ i , j ≤ N, i 6= j ,
for all C = (c1, ..., cN) ∈ CN , and for all B ∈ CM

(S) Symmetry: N(..., ci , ..., cj , ...) = N(..., cj , ..., ci , ...)

(B2) Boundary values: N(0, ..., 0,N) = 1, in CN

(A) Additivity: N[C � B] = N[C ] + N[B]

(C) Continuity of N restricted to CN with topology from RN

(M−) Monotonicity: 0 < ε ≤ min{ci ,N − cj}, ci ≤ cj ⇒
N(..., ci − ε, ..., cj + ε, ...) ≤ N(..., ci , ..., cj , ...)

These properties are independent.
The notation is consistent with the paper [3].

(M-) - the left side of the inequality is illustrated on the next page.



Illustration of Monotonicity (M-)

Figure: Cumulation, (M), (C) (graphed ci vs. i)

Cumulation and Continuity - these properties do not have a standard analog.
(M) - Monotonicity - the state with more cumulated weights has lower count (compare top left vs. top right).
(C) - Continuity - the count depends continuously on the weight change.
The count for the cumulated state at bottom right is 3.



Effective Counting Theory - Results

Theorem 1. Separability.

N[(c1, c2, . . . , cN)] =
∑

n(ci ) for some n : [0,∞)→ R

The function n(x) is called generating function for N[C ].

Theorem 2. Unique continuous.

(a) ∀t ∃ unique continuous n(x) with n(0) = t
(b) All continuous n(x) are concave.

Theorem 3. Unique bounded.

(a) ∃ unique bounded n(x)
(b) This bounded n(x) is continuous.

Theorem 4. Minimum exists.

∃N? ∀N ∈ N ∀C ∈ C N?[C ] ≤ N[C ]



Applications

weights ci −→ pi =
ci
N

probabilities

N(..., ci , ...) −→ N(..., pi , ...)

In the past (ad hoc) Bell and Dean [1]

[Q] “How many atoms do vibrations effectively spread over?”

Participation number: 1
Np [C ] = 1

N2

∑
c2
i

Pros

(S), (B), (C), (M−)

Cons

(A) is not satisfied
Moreover, it is also not multiplicative and so it doesn’t scale well.



Quantum Mechanics
• effective count of quantum states, [3]:

[Q] “How many basis states | i 〉 is the system described by |ψ 〉
effectively in?”, see [3]

[A] If P =(p1, p2, . . . , pN) , pi = |〈 i |ψ 〉|2, is the probability vector

assigned to state |ψ 〉 and basis { | i 〉} by quantum mechanics, then

the system described by |ψ 〉 is effectively in at least N?[C ] states

from { | i 〉}, where C = NP = (c1, c2, . . . , cN) and

N?[C ] =
∑

n?(ci ), n?(c) = min {c, 1}.

• new measure of uncertainty, [5]

• new measure of entanglement, [5]

• quantum computing - decoherence

Statistical Physics (entropy, [here])

Fractals (dimension, multidimensionality, [6])

Transport phenomena (Anderson localization, [7])

Biological Sciences (diversity - counting species)
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Question
Since this was very brief,

are there any questions before we continue?



Entropy

Boltzmann entropy has been used with a great success but
there are situations where it doesn’t work.

Here are some examples in high energy physics.

• In high energy collisions of an electron with a positron, annihilation occurs and,
immediately after, typically two or three hadronic jets are produced. The probability
distribution of their transverse momenta is non-Boltzmannian. This phenomenon has
defied theoreticians since several decades, particularly since Hagedorn [5][6].
• The distribution of energies E of cosmic rays arriving on Earth has been measured
for decades. This distribution is very far from exponential [5].
• Solar neutrino problem can be caused in part by the Boltzmann statistics used in
Solar Standard Model (SSM). There is no good reason why it should be applicable
there [5][7].
• The anomalous diffusion of a charm quark in a quark-gluon plasma has been
analyzed by Walton and Rafelski [5][8] through both nonextensive statistical
mechanical arguments and quantum chromodynamics. The results coincide for Tsallis
entropy Sq with q = 1.114.

Question
What is Entropy?



Similarity of Entropy and Effective numbers:

(S) Symmetry: N(..., ci , ..., cj , ...) = N(..., cj , ..., ci , ...)

(B) Boundary values: N(0, ..., 0,N) = 1, in CN

?? (A) Additivity: N[C � B] = N[C ] + N[B] ??

(C) Continuity of N restricted to CN with topology from RN

(M) Monotonicity: 0 < ε ≤ min{ci ,N − cj}, ci ≤ cj ⇒
N(..., ci − ε, ..., cj + ε, ...) ≤ N(..., ci , ..., cj , ...)

Boltzmann Entropy

S(P) = −
∑

i pi ln(pi ) , where P = (p1, p2, ..., pN)

Its additivity differs from (A).

If pi -s are constant S = k ln(W ).

Need to transfer from −
∑

i pi ln(pi ) to −
∫ L

0 p ln(p)dx .

Note: Additivity vs. Extensivity.



Maximum Entropy Principle

Equilibrium states are those with maximal achievable entropy.

In standard statistical mechanics:

Step 1. Let S(P) is the Boltzmann-Gibbs Entropy.

Step 2. Find P0 that maximizes S(P) and
identifies the equilibrum state.

Step 3. Use S(P0) to find other thermodynamic parameters,
e.g. free energy F , internal energy U, specific heat C, ...

We will concentrate on Step 2.



Boltzmann Entropy Equilibria - simple case

Typically we have a system with constraints.
We start with the necessary constraint:

Maximize S(P) = −
∫ L

0 P ln(P)dx

Constraint w(P) =
∫ L

0 Pdx = 1

No physical constraint yet.

P(x) =?



Figure: 101, 104

Note, that there cannot be any δ-functions in P(x) since −
∫ L

0 δ(x−x0) ln(δ(x−x0))dx = −∞
On graphs, we denote the part of P(x) without δ-functions as p(x) and δ-functions are marked separately.



Figure: 103 Figure: 105



Figure: 106 Figure: 127

We arrived to the standard result - the uniform distribution.



Boltzmann Entropy Equilibra - simple case - Result

Maximize S(P) = −
∫ L

0 P ln(P)dx

Constraint w(P) =
∫ L

0 Pdx = 1

No physical constraint yet.

The solution is uniform on all the available space, P(x) = 1
L .

Question
What is the solution for Effective Counting Entropy?



Effective Counting Entropy

Effective number of states is N∗[P] =
∑

i min{pi , 1},
where P = (p1, ..., pN) in the discrete case, [4]

and the Effective Volume is V∗[P] =
∫

Ω min{V P(x), 1}dx,
where P = P(x) in the continuous case, [3][10].

Since we can count states with different probabilities, we define
the Entropy directly as follows:

Definition. Effective Counting Entropy:

S∗[P] = ln(N∗[P])

S∗[P] = ln(V∗[P])

Theorem. Super-additivity over product of independent sets
of states (p

AB,i,j
= p

A,i
p
B,j

): S∗[A× B] ≥ S∗[A] + S∗[B]



Effective Counting Entropy Equilibra - simple case

Maximize V[P] =
∫ L

0 min{L P(x), 1}dx

Constraint w(P) =
∫ L

0 P(x)dx = 1

No physical constraint yet.

P(x) =?



Figure: 114, 115



Effective Counting Entropy - simple case - Result

We obtained the same result as in the case of Boltzmann
Entropy - the uniform distribution:

Maximize S(P) = −
∫ L

0 P ln(P)dx

Constraint w(P) =
∫ L

0 Pdx = 1

No physical constraint yet.

The solution is uniform on all the available space, P(x) = 1
L .



Boltzmann Entropy Equilibra - generic case

Maximize S [P] = −
∫ L

0 P(x) ln(P(x))dx

Constraint w(P) =
∫ L

0 P(x)dx = 1

Physical Constraint y(P) =
∫ L

0 x P(x)dx = y0

P(x) =?



Figure: 107, 108

Note, that there cannot be any delta functions in P(x) since −
∫ L

0 δ(x − x0) ln(δ(x − x0))dx = −∞.



Figure: 109



Figure: 110



Figure: 111

Figure: 112
Discontinuities are similar.
Consequently if S[P] is maximized,
then P(x) is monotone and continuous.



Boltzmann Entropy Equilibria - generic - Result

To finish the solution faster we can use variations and find the
standard exponential results:

0
x

p(x), y < y0

L 0
x

p(x), y > y0

L
Truncated exponentials.

Question
What is the solution for Effective Counting Entropy?



Effective Counting Entropy Equilibria - generic

Maximize V[P] =
∫ L

0 min{L P(x), 1}dx

Constraint w(P) =
∫ L

0 P(x)dx = 1

Physical Constraint y(P) =
∫ L

0 x P(x)dx = y0

P(x) =?



Figure: 116



If y(P) =
∫ L

0 x P(x)dx = y > y0, then we need to change
P(x) so that y is lowered down to y0.

Figure: 117

To better see what is happening here, let’s use an analogy.

Suppose p(x) = #of the items with a price equal to x.
Then x p(x) = the cost of the items with the price equal to x.

And
∫ L

0 x p(x)dx = the total cost of all items (max. price is L).

Then to lower the cost we need to exchange the most expensive items for free ones.



Figure: 118



Comparison of generic Equilibria for
Effective Counting and Boltzmann Entropies:

Figure: 119

Case y0 <
L
2

.



Comparison of generic Equilibria for
Effective Counting and Boltzmann Entropies:

Figure: 125

Case y0 >
L
2
, and for y0 = L

2
it is the uniform solution, which is same for both.

On the next slide, we give the solution algebraically.



Effective Counting Entropy - generic - Result

Maximize V[P] =
∫ L

0 min{L P(x), 1}dx

Constraint w(P) =
∫ L

0 P(x)dx = 1

Physical Constraint y(P) =
∫ L

0 x P(x)dx = y0

For y0≤ L
2 the solution is P(x) = p(x)+b0δ(x), see slide 34,

where

p(x) =

{
1
L , x ∈ [0, L0]
0, x ∈ (L0, L]

, L0 =
√

2Ly0, and b0 = 1−
√

2y0
L .

For y0>
L
2 the solution is flipped around x = L

2 , see slide 35,



Effective Counting Entropy in dimension d

Figure: 120

d-dimensional cubes.



Effective Counting Entropy in dimension d

C = [−L
2 ,

L
2 ]d

We can glue the (d−1)-dimensional sides of this cube to get flat d-torus or flat

d-sphere and the calculations will be same.

∆(x) = countable sum of δ−functions

Consider probability distribution P(x) = p(x) + ∆(x) on C

Maximize V[P] =
∫
C min{Ld P(x), 1} dx ≤ Ld

Constraint w(P) =
∫
C P(x)dx = 1

Physical Constraint y(P) =
∫
C |x|P(x) dx = y0

P(x) =?



Figure A. (2D flat torus)
Any δ-function can be ’moved’ to
A and B as it was done before, see
Fig. 116. on slide 31 (identification
of edges and vertices as depicted).

x
x
x
x
x
x

R =
√
dL
2

r = L
2

B B

BB

bb

a

a

A

Figure: A Figure: 121



Figure: 126



Figure: 122, 123



Figure: 124



Rotationally Symmetric Solution

Q(r) = q(r) + a0δ(r) + b0δ(r − R), R =
√
dL
2

Maximize Vd(Q) :=

∫ R

0
min{Q(r),Hd(r)} dr ≤ Ld

Constraint wd(Q) :=

∫ R

0
Q(r)dr = Ld

Physical Constraint yd(Q) :=
1

Ld

∫ R

0
r Q(r) dr

Q(r) =?



Figure: 128, 129



Effective Counting Entropy in dim d - Results

The solution is P(x) = Q(|x|)
LdHd (|x|) , where Q(r) is depicted below.

Figure: 130

Case when y0 <
∫ R

0 r Hd (r) dr .



Effective Counting Entropy in dim d - Results

Figure: 131

Case when y0 >
∫ R

0 r Hd (r) dr .

If y0 =
∫ R

0 r Hd (r) dr , then Q(r) = Hd (r), which means that the solution is uniform P(x) = 1
Ld

.



Figure 45. 2D flat torus, a solution
for small y0 has a δ-function at A
and a step function at the gray circle
(identification of edges and vertices
as depicted).

Figure: 45

Figure 46. 2D flat torus, a solution
for large y0 has a δ-function at A and
a step function at the gray area.

Figure: 46



Figure 47. 2D flat sphere, a solution
for small y0 has a δ-function at B and
a step function at the gray circle.

Figure: 47

Figure 48. 2D flat sphere, a solution
for large y0 has a δ-function at B and
a step function at the gray area.

Figure: 48



Conclusion.

Boltzmann
S(P) =

∑
i pi ln(pi )

S(P) = −
∫ L

0 P ln(P)dx

<x> is fixed.

P(x)= truncated
exponential

Maximize

if

Results

Effective Counting
N∗[P] =

∑
i min{N pi , 1}

S∗[P] = ln(
∫ L

0 min{L P, 1}dx)

<xk> is fixed.

P(x)= step function + δ( )

We have another Tool

in our Toolbox of Entropies!
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