Effective Counting Entropy (μ-Entropy)

Robert Mendris, SSU, with Ivan Horváth, UKY \& UJF
April, 2023

Effective-Number Theory, brief review

$2+3=$
5

Figure: Comparison of countings, (S), (B), (A)
! Our counting is realized by a funcion on vectors, and is a generalization of the " + " binary operation!
Comparison of standard counting (left) and effective counting (right).
(S) - Symmetry - count independent of the order of counting.
(B) - Boundary conditions - if the weights are same, then both countings give the same results.
(A) - Additivity (bottom two lines).

Definitions

Definition. Set of counting vectors:
$\mathcal{C}=\cup \mathcal{C}_{N}$, where

$$
\mathcal{C}_{N}=\left\{\left(c_{1}, c_{2}, \ldots, c_{N}\right): \quad \sum c_{i}=N, \quad c_{i} \geq 0\right\}
$$

Example.

N ones: $(1, \ldots, 1) \in \mathcal{C}, \quad(N-1)$ zeros: $(0, \ldots, 0, N) \in \mathcal{C}$

Effective numbers modeled by functions:

$$
\mathcal{N}: \mathcal{C} \rightarrow \mathbb{R}
$$

Example.

$$
\mathcal{N}(1, \ldots, 1)=N, \quad \mathcal{N}(0, \ldots, 0, N)=1
$$

The bottom Example is actually the boundary conditions (B).

Definition. Effective numbers.

\mathfrak{N} is the set of effective number functions \mathcal{N}, where $\mathcal{N}: \mathcal{C} \rightarrow \mathbb{R}$ have the following properties.
For all M, N, for all $1 \leq i, j \leq N, i \neq j$, for all $C=\left(c_{1}, \ldots, c_{N}\right) \in \mathcal{C}_{N}$, and for all $B \in \mathcal{C}_{M}$
(S) Symmetry: $\mathcal{N}\left(\ldots, c_{i}, \ldots, c_{j}, \ldots\right)=\mathcal{N}\left(\ldots, c_{j}, \ldots, c_{i}, \ldots\right)$
(B2) Boundary values: $\mathcal{N}(0, \ldots, 0, N)=1$, in \mathcal{C}_{N}
(A) Additivity: $\mathcal{N}[C \boxplus B]=\mathcal{N}[C]+\mathcal{N}[B]$
(C) Continuity of \mathcal{N} restricted to \mathcal{C}_{N} with topology from \mathbb{R}^{N}
$\left(\mathbf{M}^{-}\right)$Monotonicity: $0<\varepsilon \leq \min \left\{c_{i}, N-c_{j}\right\}, \quad c_{i} \leq c_{j} \Rightarrow$

$$
\mathcal{N}\left(\ldots, c_{i}-\varepsilon, \ldots, c_{j}+\varepsilon, \ldots\right) \leq \mathcal{N}\left(\ldots, c_{i}, \ldots, c_{j}, \ldots\right)
$$

These properties are independent.
The notation is consistent with the paper [3].
($\mathrm{M}-$) - the left side of the inequality is illustrated on the next page.

Illustration of Monotonicity (M-)

Figure: Cumulation, (M), (C) (graphed c_{i} vs. i)
Cumulation and Continuity - these properties do not have a standard analog.
(M) - Monotonicity - the state with more cumulated weights has lower count (compare top left vs. top right).
(C) - Continuity - the count depends continuously on the weight change.

The count for the cumulated state at bottom right is 3 .

Effective Counting Theory - Results

Theorem 1. Separability.

$$
\mathcal{N}\left[\left(c_{1}, c_{2}, \ldots, c_{N}\right)\right]=\sum \mathfrak{n}\left(c_{i}\right) \quad \text { for some } \mathfrak{n}:[0, \infty) \rightarrow \mathbb{R}
$$

The function $\mathfrak{n}(x)$ is called generating function for $\mathcal{N}[C]$.
Theorem 2. Unique continuous.
(a) $\forall t \quad \exists$ unique continuous $\mathfrak{n}(x)$ with $\mathfrak{n}(0)=t$
(b) All continuous $\mathfrak{n}(x)$ are concave.

Theorem 3. Unique bounded.
(a) \exists unique bounded $\mathfrak{n}(x)$
(b) This bounded $\mathfrak{n}(x)$ is continuous.

Theorem 4. Minimum exists.

$$
\exists \mathcal{N}_{\star} \quad \forall \mathcal{N} \in \mathfrak{N} \quad \forall C \in \mathcal{C} \quad \mathcal{N}_{\star}[C] \leq \mathcal{N}[C]
$$

Applications

$$
\begin{aligned}
& \text { weights } \quad c_{i} \longrightarrow p_{i}=\frac{c_{i}}{N} \quad \text { probabilities } \\
& \mathcal{N}\left(\ldots, c_{i}, \ldots\right) \longrightarrow \mathcal{N}\left(\ldots, p_{i}, \ldots\right)
\end{aligned}
$$

In the past (ad hoc) Bell and Dean [1]
[Q] "How many atoms do vibrations effectively spread over?" Participation number: $\quad \frac{1}{N_{p}[C]}=\frac{1}{N^{2}} \sum c_{i}^{2}$
(S), (B), (C), (M^{-})
? ${ }^{\text {Plons }}$
(A) is not satisfied

Moreover, it is also not multiplicative and so it doesn't scale well.

Quantum Mechanics

- effective count of quantum states, [3]:
[Q] "How many basis states $|i\rangle$ is the system described by $|\psi\rangle$ effectively in?", see [3]
[A] If $P=\left(p_{1}, p_{2}, \ldots, p_{N}\right), p_{i}=|\langle i \mid \psi\rangle|^{2}$, is the probability vector assigned to state $|\psi\rangle$ and basis $\{|i\rangle\}$ by quantum mechanics, then the system described by $|\psi\rangle$ is effectively in at least $\mathcal{N}_{\star}[C]$ states from $\{|i\rangle\}$, where $C=N P=\left(c_{1}, c_{2}, \ldots, c_{N}\right)$ and $\mathcal{N}_{\star}[C]=\sum \mathfrak{n}_{\star}\left(c_{i}\right), \mathfrak{n}_{\star}(c)=\min \{c, 1\}$.
- new measure of uncertainty, [5]
- new measure of entanglement, [5]
- quantum computing - decoherence

Statistical Physics (entropy, [here])
Fractals (dimension, multidimensionality, [6])
Transport phenomena (Anderson localization, [7])
Biological Sciences (diversity - counting species)

References

for Effective Number Theory:

[1] R.J. Bell and P. Dean,
Disc. Faraday Soc. 50, 55-61 (1970).
[2] I. Horváth and R. Mendris,
"A Different Angle on Quantum Uncertainty",
Proceedings 13(1), 8 (2019), http://arxiv.org/abs/1907.01606
[3] I. Horváth and R. Mendris,
"Counting the Identities of a Quantum State",
Entropy 22, 1273 (2020), http://arxiv.org/abs/1807.03995
[4] A.W. Marshall, I. Olkin, B.C. Arnold, "Inequalities: Theory of Majorization and Its Applications",
Springer Series in Statistics, Springer-Verlag (2011)
[5] I. Horváth, "The Measure Aspect of Quantum Uncertainty,
of Entanglement, and the Associated Entropies",
Quantum Rep. 3(3) (2021), 534-548, https://arxiv.org/abs/1809.07249
[6] Ivan Horváth, Peter Markoš and Robert Mendris
Counting-Based Effective Dimension and Discrete Regularizations
Entropy 25(3), 482 (2023), https://arxiv.org/abs/2205.11520
[7] Ivan Horváth and Peter Markoš
Super-Universality in Anderson Localization
Phys. Rev. Lett. 129, 106601 (2022), https://arxiv.org/abs/2110.11266

Entropy

Boltzmann entropy has been used with a great success but there are situations where it doesn't work.

Here are some examples in high energy physics.

- In high energy collisions of an electron with a positron, annihilation occurs and, immediately after, typically two or three hadronic jets are produced. The probability distribution of their transverse momenta is non-Boltzmannian. This phenomenon has defied theoreticians since several decades, particularly since Hagedorn [5][6].
- The distribution of energies E of cosmic rays arriving on Earth has been measured for decades. This distribution is very far from exponential [5].
- Solar neutrino problem can be caused in part by the Boltzmann statistics used in Solar Standard Model (SSM). There is no good reason why it should be applicable there [5][7].
- The anomalous diffusion of a charm quark in a quark-gluon plasma has been analyzed by Walton and Rafelski [5][8] through both nonextensive statistical mechanical arguments and quantum chromodynamics. The results coincide for Tsallis entropy S_{q} with $\mathrm{q}=1.114$.

Question

What is Entropy?

Similarity of Entropy and Effective numbers:

(S) Symmetry: $\mathcal{N}\left(\ldots, c_{i}, \ldots, c_{j}, \ldots\right)=\mathcal{N}\left(\ldots, c_{j}, \ldots, c_{i}, \ldots\right)$
(B) Boundary values: $\mathcal{N}(0, \ldots, 0, N)=1$, in \mathcal{C}_{N}
?? (A) Additivity: $\mathcal{N}[C \boxplus B]=\mathcal{N}[C]+\mathcal{N}[B] \quad$??
(C) Continuity of \mathcal{N} restricted to \mathcal{C}_{N} with topology from \mathbb{R}^{N}
(M) Monotonicity: $0<\varepsilon \leq \min \left\{c_{i}, N-c_{j}\right\}, c_{i} \leq c_{j} \Rightarrow$ $\mathcal{N}\left(\ldots, c_{i}-\varepsilon, \ldots, c_{j}+\varepsilon, \ldots\right) \leq \mathcal{N}\left(\ldots, c_{i}, \ldots, c_{j}, \ldots\right)$

Boltzmann Entropy

$S(P)=-\sum_{i} p_{i} \ln \left(p_{i}\right)$, where $P=\left(p_{1}, p_{2}, \ldots, p_{N}\right)$ Its additivity differs from (A).

If $p_{i}-s$ are constant $S=k \ln (W)$.
Need to transfer from $-\sum_{i} p_{i} \ln \left(p_{i}\right)$ to $-\int_{0}^{L} p \ln (p) d x$.
Note: Additivity vs. Extensivity.

Maximum Entropy Principle

Equilibrium states are those with maximal achievable entropy.

In standard statistical mechanics:

Step 1. Let $S(P)$ is the Boltzmann-Gibbs Entropy.
Step 2. Find P_{0} that maximizes $S(P)$ and identifies the equilibrum state.

Step 3. Use $S\left(P_{0}\right)$ to find other thermodynamic parameters, e.g. free energy F, internal energy U, specific heat C, \ldots

We will concentrate on Step 2.

Boltzmann Entropy Equilibria - simple case

Typically we have a system with constraints.
We start with the necessary constraint:

Maximize $\quad S(P)=-\int_{0}^{L} P \ln (P) d x$
Constraint $\quad w(P)=\int_{0}^{L} P d x=1$
No physical constraint yet.
$P(x)=$?

Figure: 101, 104
Note, that there cannot be any δ-functions in $P(x)$ since $\quad-\int_{0}^{L} \delta\left(x-x_{0}\right) \ln \left(\delta\left(x-x_{0}\right)\right) d x=-\infty$ On graphs, we denote the part of $P(x)$ without δ-functions as $p(x)$ and δ-functions are marked separately.

Figure: 103

Figure: 105

Figure: 106

Figure: 127

We arrived to the standard result - the uniform distribution.

Boltzmann Entropy Equilibra - simple case - Result

Maximize $\quad S(P)=-\int_{0}^{L} P \ln (P) d x$
Constraint $\quad w(P)=\int_{0}^{L} P d x=1$
No physical constraint yet.

The solution is uniform on all the available space, $\quad P(x)=\frac{1}{L}$.

Question

- What is the solution for Effective Counting Entropy?

Effective Counting Entropy

Effective number of states is $\mathcal{N}_{*}[P]=\sum_{i} \min \left\{p_{i}, 1\right\}$, where $P=\left(p_{1}, \ldots, p_{N}\right)$ in the discrete case, [4] and the Effective Volume is $V_{*}[P]=\int_{\Omega} \min \{V P(\mathbf{x}), 1\} d \mathbf{x}$, where $P=P(\mathrm{x})$ in the continuous case, [3][10].

Since we can count states with different probabilities, we define the Entropy directly as follows:

Definition. Effective Counting Entropy:

$$
\begin{aligned}
& \mathcal{S}_{*}[P]=\ln \left(\mathcal{N}_{*}[P]\right) \\
& \mathcal{S}_{*}[P]=\ln \left(\mathcal{V}_{*}[P]\right)
\end{aligned}
$$

Theorem. Super-additivity over product of independent sets of states $\left(p_{A B, i, j}=p_{A, i} p_{B, j}\right): \quad \mathcal{S}_{*}[A \times B] \geq \mathcal{S}_{*}[A]+\mathcal{S}_{*}[B]$

Maximize $\quad V[P]=\int_{0}^{L} \min \{L P(x), 1\} d x$
Constraint $\quad w(P)=\int_{0}^{L} P(x) d x=1$
No physical constraint yet.
$P(x)=$?

Figure: 114, 115

Effective Counting Entropy - simple case - Result

We obtained the same result as in the case of Boltzmann Entropy - the uniform distribution:

Maximize $\quad S(P)=-\int_{0}^{L} P \ln (P) d x$
Constraint $\quad w(P)=\int_{0}^{L} P d x=1$
No physical constraint yet.

The solution is uniform on all the available space, $\quad P(x)=\frac{1}{L}$.

Boltzmann Entropy Equilibra - generic case

Maximize $\quad S[P]=-\int_{0}^{L} P(x) \ln (P(x)) d x$
Constraint $w(P)=\int_{0}^{L} P(x) d x=1$
Physical Constraint $y(P)=\int_{0}^{L} x P(x) d x=y_{0}$

$$
P(x)=\text { ? }
$$

Figure: 107, 108
Note, that there cannot be any delta functions in $P(x)$ since $\quad-\int_{0}^{L} \delta\left(x-x_{0}\right) \ln \left(\delta\left(x-x_{0}\right)\right) d x=-\infty$.

Figure: 109

Figure: 110

Discontinuities are similar.
Consequently if $S[P]$ is maximized, then $P(x)$ is monotone and continuous.

Figure: 112

Boltzmann Entropy Equilibria - generic - Result

To finish the solution faster we can use variations and find the standard exponential results:

Truncated exponentials.

Question

- What is the solution for Effective Counting Entropy?

Maximize $\quad \mathcal{V}[P]=\int_{0}^{L} \min \{L P(x), 1\} d x$
Constraint $\quad w(P)=\int_{0}^{L} P(x) d x=1$
Physical Constraint $\quad y(P)=\int_{0}^{L} x P(x) d x=y_{0}$
$P(x)=$?

Figure: 116

If $\quad y(P)=\int_{0}^{L} x P(x) d x=y>y_{0}$, then we need to change $P(x)$ so that y is lowered down to y_{0}.

Figure: 117

To better see what is happening here, let's use an analogy.
Suppose $\mathbf{p}(\mathbf{x})=\#$ of the items with a price equal to \mathbf{x}.
Then $\mathbf{x p}(\mathbf{x})=$ the cost of the items with the price equal to \mathbf{x}.
And $\int_{0}^{L} \mathbf{x p}(\mathbf{x}) \mathbf{d x}=$ the total cost of all items (max. price is \mathbf{L}).
Then to lower the cost we need to exchange the most expensive items for free ones.

Figure: 118

Comparison of generic Equilibria for Effective Counting and Boltzmann Entropies:

Figure: 119
Case $y_{0}<\frac{L}{2}$.

Comparison of generic Equilibria for Effective Counting and Boltzmann Entropies:

Figure: 125
Case $y_{0}>\frac{L}{2}, \quad$ and for $y_{0}=\frac{L}{2}$ it is the uniform solution, which is same for both.
On the next slide, we give the solution algebraically.

Effective Counting Entropy - generic - Result

Maximize $\quad \mathcal{V}[P]=\int_{0}^{L} \min \{L P(x), 1\} d x$
Constraint $\quad w(P)=\int_{0}^{L} P(x) d x=1$
Physical Constraint $\quad y(P)=\int_{0}^{L} x P(x) d x=y_{0}$

For $y_{0} \leq \frac{L}{2}$ the solution is $P(x)=p(x)+b_{0} \delta(x)$, see slide 34 , where
$p(x)=\left\{\begin{array}{cl}\frac{1}{L}, & x \in\left[0, L_{0}\right] \\ 0, & x \in\left(L_{0}, L\right]\end{array}, L_{0}=\sqrt{2 L y_{0}}\right.$, and $b_{0}=1-\sqrt{\frac{2 y_{0}}{L}}$.
For $y_{0}>\frac{L}{2}$ the solution is flipped around $x=\frac{L}{2}$, see slide 35 ,

Effective Counting Entropy in dimension d

$$
d=1
$$

$$
C=\left[-\frac{L}{2}, \frac{L}{2}\right]^{d}
$$

$$
d=2
$$

$$
d=3
$$

Figure: 120
d-dimensional cubes.

Effective Counting Entropy in dimension d

$C=\left[-\frac{L}{2}, \frac{L}{2}\right]^{d}$
We can glue the $(d-1)$-dimensional sides of this cube to get flat d-torus or flat d-sphere and the calculations will be same.
$\Delta(\mathbf{x})=$ countable sum of δ-functions
Consider probability distribution $P(\mathbf{x})=p(\mathbf{x})+\Delta(\mathbf{x})$ on C
Maximize $\quad \mathcal{V}[P]=\int_{C} \min \left\{L^{d} P(\mathbf{x}), 1\right\} d \mathbf{x} \leq L^{d}$
Constraint $\quad w(P)=\int_{C} P(\mathbf{x}) d \mathbf{x}=1$
Physical Constraint $\quad y(P)=\int_{C}|\mathbf{x}| P(\mathbf{x}) d \mathbf{x}=y_{0}$

$$
P(\mathbf{x})=?
$$

Figure A. (2D flat torus)
Any δ-function can be 'moved' to A and B as it was done before, see

$$
R=\frac{\sqrt{d} L}{2}
$$

Fig. 116. on slide 31 (identification of edges and vertices as depicted).

$$
r=\frac{L}{2}
$$

Figure: A

Figure: 121

shell, dim $=d-1$

Figure: 126

Figure: 122, 123

Figure: 124

Rotationally Symmetric Solution

$$
Q(r)=q(r)+a_{0} \delta(r)+b_{0} \delta(r-R), \quad R=\frac{\sqrt{d} L}{2}
$$

Maximize $\quad \mathcal{V}_{d}(Q):=\int_{0}^{R} \min \left\{Q(r), H_{d}(r)\right\} d r \leq L^{d}$
Constraint $\quad w_{d}(Q):=\int_{0}^{R} Q(r) d r=L^{d}$
Physical Constraint $y_{d}(Q):=\frac{1}{L^{d}} \int_{0}^{R} r Q(r) d r$

$$
Q(r)=?
$$

Figure: 128, 129

The solution is $P(\mathrm{x})=\frac{Q(|\mathrm{x}|)}{L^{d} H_{d}(|\mathrm{x}|)}$, where $Q(r)$ is depicted below.

Figure: 130

Case when $y_{0}<\int_{0}^{R} r H_{d}(r) d r$.

Effective Counting Entropy in dim d-Results

Figure: 131

Case when $y_{0}>\int_{0}^{R} r H_{d}(r) d r$.
If $y_{0}=\int_{0}^{R} r H_{d}(r) d r$, then $Q(r)=H_{d}(r)$, which means that the solution is uniform $P(\mathbf{x})=\frac{1}{L^{d}}$.

Figure 45. 2D flat torus, a solution for small y_{0} has a δ-function at A and a step function at the gray circle (identification of edges and vertices as depicted).

Figure: 45
Figure 46. 2D flat torus, a solution for large y_{0} has a δ-function at A and a step function at the gray area.

Figure: 46

Figure 47. 2D flat sphere, a solution for small y_{0} has a δ-function at B and a step function at the gray circle.

Figure: 47
Figure 48. 2D flat sphere, a solution for large y_{0} has a δ-function at B and a step function at the gray area.

Figure: 48

Conclusion.

$$
\begin{array}{lcl}
\hline \text { Boltzmann } & \text { Effective Counting } \\
S(P)=\sum_{i} p_{i} \ln \left(p_{i}\right) & & \mathcal{N}_{*}[P]=\sum_{i} \min \left\{N p_{i}, 1\right\} \\
S(P)=-\int_{0}^{L} P \ln (P) d x & \text { Maximize } & \mathcal{S}_{*}[P]=\ln \left(\int_{0}^{L} \min \{L P, 1\} d x\right) \\
<x>\text { is fixed. } & \text { if } & <x^{k}>\text { is fixed. } \\
P(x)=\begin{array}{ccc}
\text { truncated } \\
\text { exponential } & \text { Results } & P(x)=\text { step function }+\delta() \\
\hline
\end{array} & \\
\hline
\end{array}
$$

We have another Tool in our Toolbox of Entropies!

References

[1] L. Boltzmann,
On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium, Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877 (Wien. Ber., 76:373-435).
[2] C. Tsallis,
The Nonadditive Entropy S_{q} and Its Applications in Physics and Elsewhere: Some Remarks, Entropy 13, 1765-1804 (2011), https://doi.org/10.3390/e13101765
[3] I. Horváth and R. Mendris, "A Different Angle on Quantum Uncertainty",
Proceedings 13(1), 8 (2019), http://arxiv.org/abs/1907.01606
[4] I. Horváth and R. Mendris,
"Counting the Identities of a Quantum State",
Entropy 22, 1273 (2020), http://arxiv.org/abs/1807.03995

References

[5] C. Tsallis and E. P. Borges,
Nonextensive statistical mechanics - Applications to nuclear and high energy physics, https://arxiv.org/abs/cond-mat/0301521
[6] R. Hagedorn,
N. Cim. 3, 147 (1965).
[7] G. Kaniadakis, A. Lavagno and P. Quarati,
Phys. Lett. B 369, 308 (1996);
[8] D.B. Walton and J. Rafelski,
Phys. Rev. Lett. 84, 31 (2000).
[9] K. Falconer,
Fractal geometry - mathematical foundations and applications, (Wiley, 1990) pp. I-XXII, 1-288.
[10] I. Horváth,
"The Measure Aspect of Quantum Uncertainty,
of Entanglement, and the Associated Entropies",
Quantum Rep. 3(3) (2021), 534-548, https://arxiv.org/abs/1809.07249

Thank you!

