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I discuss an emergence of complex masses and an oscillating decay of
correlations in some lattice models at finite density. The models are Z(N)
LGT’s with static quarks and SU(N) Polyakov loop models both for N=3 and
in the ’t Hooft-Veneziano limit. As a mathematical tool used to study the
correlation functions, I review different approaches to construction of dual
formulations of various Abelian and non-Abelian LGTs.

Based on papers in collaboration with A. Papa, V. Chelnokov, S. Voloshyn, E. Mendicelli

New Trends in Thermal Phases of QCD, Prague, April 14-17, 2023



1. Complex masses in lattice spin and gauge models

2. Dual formulations of LGT: general review

3. Duals of lattice models and sign problem

4. Abelian models with static quarks

5. Polyakov loop model: the ’t Hooft-Veneziano limit

6. Polyakov loop model: Monte-Carlo simulations

7. Summary



I. Complex masses in lattice spin and gauge models

A. Bazavov and J.H. Weber, Color Screening in Quantum Chromodynam-
ics, Progress in Particle and Nuclear Physics, 116 (2021) 103823;
80 pages of text in [arXiv:2010.01873 [hep-lat]];
only 2 pages devoted to screening masses at finite density

Simulations at imaginary chemical potential:

M. Andreoli, C. Bonati, M. D’Elia, M. Mesiti, F. Negro, A. Rucci, F. Sanfil-
ippo, Phys.Rev. D 97 054515 (2018)



Phase with oscillating decay of correlations was shown to exist in:

• (1 + 1)-dimensional SU(3) QCD with static quark determinant and
non-zero chemical potential
H. Nishimura, M. Ogilvie, K. Pangeni, Phys.Rev. D93 (2016) 094501

• Three-dimensional Z(3) spin model in a complex external field
O. Akerlund, P. de Forcrand, T. Rindlisbacher, JHEP 10 (2016) 055

Can similar phase be realized in QCD at finite baryon density
and, if yes, how to study it?



II. Dual formulations of LGT: general review

Dual representations and their significance:

• Map strong coupling (disordered) phase to weak coupling (ordered)
phase

• Allow to establish in many cases relevant configurations responsible
for such phenomena like confinement, mass gap generation, etc.

• Have been used to establish many rigorous results in spin and gauge
models



Conventional dual transformations can be defined as a sequence of trans-
formations consisting of the following steps:

1. Fourier expansion of the Boltzmann weight exp(H). This is an essen-
tially character expansion on the group.

2. Exact integration over original degrees of freedom. As a result one
obtains a set of constraints on the summation variables (which label
representations of the group G and matrix elements of U(x)) in the
character expansion.

3. Solution of the constraints in terms of new dual variables.

This is a generalization of the Kramers–Wannier dual transformations of
the two-dimensional Ising model and works perfectly well for many Abelian
spin and lattice gauge models.



• Dual representations based on the plaquette formulation. Dual vari-
ables are introduced as variables conjugate to local Bianchi identities.
The dual model is non-local due to the presence of connectors C.
(Batrouni, Halpern, ’82-84; Borisenko, Voloshin, Faber, ’09)

Z =
∑
rc

∫ ∏
p
dUpe

βReTrUp ∏
c
d(rc)χrc(Uc = UACUBc

†) (1)

• Dual representations based on 1) the character expansion of the Boltz-
mann weight and 2) the integration over link variables using Clebsch-
Gordan expansion (Anishetty et.al., ’93)

Z =
∑
rp,rl

∏
p
Crp(βµν)

∏
x

(6j links)
∏
c

(6j cubes) (2)

• In the strong coupling limit, β = 0, the SU(N) model can be mapped
onto monomer-dimer-closed baryon loop model (Karsch, Mütter’89)



• Recent approaches:
- n-link action (Vairinhos, de Forcrand, ’14);
- Abelian color cycles (Gattringer, C. Marchis, ’17-18);
- gauge integration via Weingarten calculus WgN(σ)

(Borisenko, Chelnokov, Voloshin, ’17; Gagliardi, Unger, ’20)

E.g., 2d U(N) LGT with staggered fermions

Z =
∞∑

r(p)=−∞

∞∑
t(p)=0

N∑
k(l),n(l)=0

N∑
s(x)=0

∑
{τl,σl}

∏
x
ms(x) N |γ(x)|

∏
p

(β/2)2t(p)+|r(p)|

tp!(tp + |r(p)|)!

∏
l

[
ην(x)

2

]k(l)+n(l)

WgN(τ−1
l σl)

∏
L

(−1)1+1
2|L|

× (constraints) (3)



III. Duals of lattice models and sign problem

Can dual formulations solve fully or partially the sign problem in spin and
gauge models?
For an important class of classical spin models like Z(N) model in an ex-
ternal complex magnetic field, O(N) non-linear sigma model and principal
chiral model at finite density the answer is ”YES”.
For the non-Abelian LGT with the action

S = βt
∑
pt

ReTrUpt + βs
∑
ps

ReTrUps +
∑
lt

Ψ̄VΨ + ξ
∑
ls

Ψ̄SΨ (4)

the positive answer exists if βs = 0 and ξ = at/as → 0, i.e. in the static
limit for the matter fields.

Vtt′(x) = 2atmfδtt′ + eatµfU0(x, t)δt,t′−1 − e
−atµfU†0(x, t′)δt,t′+1 (5)



Model Dual positive weight
Z(N) and XY spin models, µ 6= 0 Yes

O(N) linear and non-linear Yes
sigma models, µ 6= 0

Principal chiral models, µ 6= 0 Yes
Polyakov loop spin models, µ 6= 0 Yes

Pure Abelian LGT Yes
Pure non-Abelian LGT Yes, only for n0-link action

Abelian LGT, µ 6= 0, static quarks Yes
Abelian LGT, µ 6= 0, 2d Yes, if m = 0

Abelian LGT, µ 6= 0, d > 2 No
Z(3) LGT with Z(3) matter fields Yes
Scalar Lattice QCD, µ 6= 0, β = 0 Yes

Full scalar Lattice QCD, µ 6= 0 No
Lattice QCD, µ 6= 0, β = 0 Yes (partially)

Full lattice QCD, µ 6= 0 No
Pure SU(N) LGT with θ-term, 2d Yes
O(3) non-linear sigma model, θ 6= 0 No

Pure SU(N) LGT with θ-term, 4d No



Duals of Polyakov loop models

Strategy

• Integration over fermion fields.

• Integration over spatial gauge fields (usually requires some approxi-
mation for fermion determinant and/or Wilson gauge action). Resulting
theory is an effective d-dimensional spin model of interacting Polyakov
loops, W (x) =

∏Nt
t=1 U0(x, t), in the external complex (if µ 6= 0)

field.

• Construction of a dual representation for the effective spin model.



Quark determinant is expanded as

Det (V + ξS) = DetV
LNtN/2∑

s=0

ξ2s

(2s)!

∑
σ∈S2s

sgn(σ)Pσ(V−1S) . (6)

Pσ(X) is power sum symmetric function of the matrix argument and the
static quark determinant can be computed exactly

Det Vtt′(x) ∼
∏
x

Detc

(
1 + hf

+ W(x)
) (

1 + hf
−W†(x)

)
(7)

h± = exp(−Nt sinh−1 atm± βµ). By Cauchy identity

Nf∏
f=1

Det Vtt′(x) =
∑
r,s
χr(W(x)) χs(W∗(x)) χr′(hf

+) χs′(hf
−) (8)



Polyakov loop model: βs = 0, ξ = 0, arbitrary βt

Z =
∫ ∏

x
dW (x)

∏
x,n

∑
λ

DNt
λ (βt)χλ(W (x))χλ(W †(x+ en))


×

Nf∏
f=1

∏
x

Det Vtt′(x),

Dλ(β) - coefficients of the character expansion. Its dual is given by (d = 3,
one flavour of staggered fermions)

Z =
∞∑

{q(x)}=−∞

∑
{ρ(x)}

N∑
{k(x),l(x)}=0

(9)

×
∏
x
e−(k(x)+l(x))m−q(x)Nµ ∏

ceven

Bc(ρ(x)) ,



1

x

9

1112

2

3

4

68

7

5

11

The order of coupling of the link representatons in the integrand of one-site
group integrals: in three-dimensional theory representations are coupled
inside every even cube of the lattice.



Bc(ρ(x)) =
∞∑

λ1=0

Dλ1
(βt) . . .

∞∑
λ12=0

Dλ12
(βt)

∑
σ1,γ1

. . .
∑
σ8,γ8

×Cσ1
λ1 λ4

C
σ2
λ2 λ̄1

C
σ3
λ̄3 λ̄2

C
σ4
λ3 λ̄4

C
σ5
λ̄5 λ̄8

C
σ6
λ5 λ̄6

C
σ7
λ6 λ7

C
σ8
λ8 λ̄7

C
γ1
σ1 λ9

C
γ5
σ5 λ9

C
γ2
σ2 λ10

C
γ6
σ6 λ10

C
γ3
σ3 λ11

C
γ7
σ7 λ11

C
γ4
σ4 λ12

C
γ8
σ8 λ12

4∏
i=1

C
ρ(xi)+q(xi)

N

γi 1k(xi)

8∏
i=5

C
ρ(xi)

γi 1l(xi)
. (10)

C
γ
σ λ are the Littlewood-Richardson coefficients (positive integer numbers).



Polyakov loop model: βs = 0, ξ = 0, βt < 1, m >> 1

Z =
∫ ∏

x
dW (x)eβeff

∑
x,ν ReTrW (x)TrW †(x+eν) (11)

∏
x

Nf∏
f=1

det[1 + h+W (x)] det[1 + h−W
†(x)]

Z =
∞∑

{r(l)}=−∞

∞∑
{s(l)}=0

∏
l

(
β
2

)|r(l)|+2s(l)

(s(l) + |r(l)|)!s(l)!

∏
x
RN(n+(x), n−(x)) ,

n±(x) =
2d∑
i=1

(
s(li) +

1

2
|r(li)|

)
±

1

2

d∑
ν=1

(rν(x)− rν(x− eν)) . (12)



Function RN(n,p) depends on N , Nf , h±. For N = 3, Nf = 1

R3(n, p) = Q3(n+ 1, p)
(
h+ + h2

−+ h+h
3
−+ h3

+h
2
−
)

+ Q3(n, p)
(
1 + h3

+ + h3
−+ h3

+h
3
−
)

+ Q3(n, p+ 1)
(
h−+ h2

+ + h3
+h−+ h2

+h
3
−
)

+ Q3(n+ 1, p+ 1)
(
h+h−+ h2

+h
2
−
)

+ Q3(n+ 2, p)h+h
2
−+Q3(n, p+ 2)h2

+h− .

QN(n, p) =
∑

λ`min(n,p)

d(λ) d(λ+ |q|N). (13)

d(λ) is the dimension of the permutation group Sr in the representation λ,
q = (p− n)/N (when q is not an integer QN(n, p) = 0).



IV. Abelian models with static quarks

For Z(N) and U(1) models with the static staggered or Wilson fermions

ZΛ =
N−1∑
{sl}=0

eSg(sp)
Nf∏
f=1

Det Vtt′(x) , (14)

ZΛ =
∫ 2π

0

∏
l

dφl
2π

eSg(φp)
Nf∏
f=1

Det Vtt′(x) . (15)

the dual formulation with a positive weight can be constructed for any num-
ber of flavors, in any dimension and for arbitrary gauge action
(Borisenko, et.al., ’22)

eSg(φp) =
∑
r
Cre

irφ(p) , Cr > 0 . (16)



E.g., 2 + 1-dimensional U(1) model with Nf degenerate flavors

Z =
∞∑

{q(x)}=−∞

∏
lt

Cq(x)−q(x+e0)(βs)

×
∞∑

ρn(x)=−∞

∏
ls

Cq(x)−q(x+en)+ρn(x)(βt)
∏
p
Kρ(p) , (17)

Kρ =

(
h+

h−

)ρ
2 (gNf)!

(gNf + ρ)!
P
ρ
gNf

(
1 + h+h−
1− h+h−

)
, (18)

ρ(p) = ρ1(x) + ρ2(x+ e1)− ρ1(x+ e2)− ρ2(x).

g = 1(2) for the staggered (Wilson) fermions, P ρn(x) is the associated
Legendre function. Product

∏
p runs over all space-like plaquettes of the

dual lattice at a fixed time slice.



Complex masses in Z(N) with two flavors

For Z(N) model one has to make the following replacement

∞∑
r=−∞

→
N∑
r=0

∞∑
q=−∞

, Cr(β)→ Cr+qN(β) . (19)

This partition function can be evaluated as

Z = CLNt0 (β)

Nf∏
f=1

ALf
∑
i=0

λLi , (20)

where λi are eigenvalues of the following transfer matrix

Tr1r2 =
√
Br1Br2

1∑
k1=0
k′1=0

. . .
1∑

kNf
=0

k′Nf
=0

Nf∏
f=1

(hf+)kf (hf−)
k′f . (21)



Br = CNtr (β)/CNt0 (β) and all configurations are subject to constraint r1−
r2 +

∑Nf
f=1

(
kf − k′f

)
= 0(modN). The Wilson action and two staggered

fermion flavors. When chemical potentials are zero all eigenvalues are
real. This leads to a familiar exponential decay of the connected part of the
Polyakov loop correlation function. When non-zero chemical potentials are
introduced, one finds such values of the coupling constant above which the
eigenvalues become complex. The second and the third eigenvalues are
conjugate to each other. This implies the following decay of the two-point
correlation function of the Polyakov loops

〈W (0)W ∗(R)〉c ≈ e−mrR cosmiR . (22)

In the limit N →∞: Z(N)→ U(1) and Imλ→ 0.
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Plots of the imaginary part of the 2nd eigenvalue of the transfer matrix of
Z(N) model with two flavors of staggered fermions as a function of the
coupling constant. Left panel: m1 = 3,m2 = 1, µ1 = −0.16, µ2 =

0.45. Right panel: m1 = 1,m2 = 0.1, µ1 = 2, µ2 = 1.



V. Polyakov loop model: the ’t Hooft-Veneziano limit

In the ’t Hooft-Veneziano limit the problem is reduced to the calculation of
the group integral

∫
dW Wn(W †)p

Nf∏
f=1

Det Vtt′(W(x)) (23)

in the limit N →∞, Nf →∞ such that Nf/N = κ is fixed.

Phase diagram at µ 6= 0

Critical surface (yellow) of the 3rd order phase transition:

µ = ln
(

1 +
√

1− z2
)
− ln z −

√
1− z2 , z =

κh

1− dβ
. (24)



Region I: no
dependence on
µ, SU(N) free
energy coincides
with U(N) one.
Mass spectrum is
real.
Region II: non-
trivial dependence
on µ. Non-zero
particle density
and complex
masses.
Region III:
Masses are real.
z ≈ cosh−1 µ.



Correlation functions and screening masses

The correlation function of an arbitrary form

Γ(η, η̄) = 〈
∏
x
W (x)η(x)W ∗(x)η̄(x) 〉 (25)

is evaluated by integrating over Gaussian fluctuations around large N , Nf
solution. Results below for d = 3:



N -point function and baryon potential: pure gauge theory

ΓN(σ) ∼
∑
x

N∏
i=1

Gx,x(i)(σ) , σ =

√
2

β
(1− dβ) . (26)

x(i) - position of N static quarks. Green function

Gx,x′ =
const

R
d
2−1

Kd
2−1

(σR) , R2 =
d∑

n=1

(xn − x′n)2 .

Calculating ΓN(σ) in the continuum reduces to the geometric median
problem: find a point y which minimizes

∑N
i=1

√∑d
n=1(yn − xn(i))2.

If N = 3 this gives famous Y law for the baryon potential

Γ3(σ) ∼ exp[−σY ] . (27)



Complex masses and oscillating decay

Connected part of the Polyakov loop correlation in Regions II and III

〈W (0)W ∗(R) 〉c = MM∗(GR(m1) +GR(m2)) . (28)

M is magnetization, GR(mi) are diagonal correlators in the correlation
matrix

Γ(x, y) =

(
〈ReTrW (x)ReTrW (y)〉 〈ReTrW (x)ImTrW (y)〉
〈ImTrW (x)ReTrW (y)〉 〈ImTrW (x)ImtrW (y)〉

)
at µ 6= 0. If µ = 0, m1,2 correspond to chromo-electric and chromo-
magnetic masses. If µ 6= 0, in the Region II the masses are complex:
m1 = m∗2 = mr + imi. This leads to an exponential oscillating decay of
the correlations

〈W (0)W ∗(R) 〉c ∼ e−mrR cosmiR . (29)

In the Region III the masses are real, m2 > m1. No phase transition
separating Regions II and III has been found.



VI. Polyakov loop model: Monte-Carlo simulations

Estimated phase diagram. Data are well fitted by the function µc = −a lnh+

c − bh2, with a = 0.988, c = −3.4, b = 1406. The line of the second
order phase transition might persist in the heavy-dense limit.
See also C. Gattringer et.al., NPB 862; M. Fromm et.al., JHEP 01, 042.
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Behavior of the masses m1 and m2 on the lattice L = 20 as a function of
β for different values of h = e−m and µ. Left: first order phase transition.
Middle: second order phase transition. Right: crossover.
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vicinity of the second order phase transition.
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VII. Summary

Complex masses was shown to exist in several lattice models if the
fermion determinant is taken in the static approximation:

• (1 + 1)-dimensional QCD

• Z(3) spin model in an external complex magnetic field

• Abelian Z(N) LGTs with static quark determinant

• (3 + 1)-dimensional SU(N) LGT in the combined βs = 0
and the ’t Hooft-Veneziano limits

The case of SU(3) remains open
How to go beyond static approximation for quark determinant?

Existence of the complex spectrum at finite density:
another challenge for Monte-Carlo simulations of QCD


