The QCD topological susceptibility at finite temperature: a new investigation with staggered spectral projectors

C. BONANNO
IFT UAM/CSIC MADRID

☑ claudio.bonanno@csic.es

NEW TRENDS IN THERMAL PHASES OF QCD

14-17/04/2023, Prague

Based on:

- "Topological susceptibility of $N_f = 2 + 1$ QCD from staggered fermions spectral projectors at high temperatures",
- A. Athenodorou, CB, C. Bonati, G. Clemente, F. D'Angelo, M. D'Elia, L. Maio, G. Martinelli, F. Sanfilippo, A. Todaro, JHEP 10 (2022) 197 [2208.08921]

Motivations

• Topology and the Dirac spectrum

Index theorem relates gauge topology with low-lying Dirac spectrum

$$Q = \frac{1}{16\pi^2} \int d^4x \, \text{Tr} \left\{ G_{\mu\nu}(x) \widetilde{G}^{\mu\nu}(x) \right\} \in \mathbb{Z}, \qquad Q = n_0^{(L)} - n_0^{(R)}.$$

Intruiguing interplay between gauge topology and chiral properties of fermions.

Studying thermodynamics of QCD topology

- → deeper insight into the non-perturbative properties of the theory.
 - Strong-CP violation and axion phenomenology

QCD admits CP-violation via the θ -term, coupling Q to $S_{\rm QCD}$.

The QCD axion, introduced to dynamically relax θ to 0, has been considered as a Dark Matter candidate.

The behavior of the axion effective parameters at high temperatures is extremely relevant for cosmology \longrightarrow essential input for present and future experimental searches.

$$\chi(T) \equiv \lim_{V \to \infty} \frac{\langle Q^2 \rangle_T}{V} \propto m_a^2(T)$$

Axion phenomenology requires QCD inputs for the T-dependence of χ in the high-temperature regime.

Non-chiral fermions and would-be-zero modes

Lattice QCD is a natural non-perturbative tool to compute $\chi(T)$ from first-principle. However: several non-trivial computational challenges.

In the QCD path-integral, field configurations are weighted with the determinant of the Dirac operator:

$$\langle \mathcal{O} \rangle = \frac{\int [dA] e^{-S_{\text{YM}}[A]} \prod_f \det\{ \not\!\!D[A] + m_f \} \mathcal{O}[A]}{\int [dA] e^{-S_{\text{YM}}[A]} \prod_f \det\{ \not\!\!D[A] + m_f \}}, \qquad \det\{ \not\!\!D + m_f \} = \prod_{\lambda \in \mathbb{R}} \left(i\lambda + m_f \right).$$

In the continuum, Dirac determinant suppresses contribution of non-zero Q configurations to $\langle \mathcal{O} \rangle$ as a power of the quark mass (because of index theorem):

$$Q[A] = n_0^{(L)} - n_0^{(R)} \implies \det\{D\!\!\!/ [A] + m_f\} \propto m_f^\alpha$$

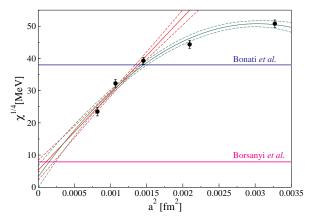
Typical lattice fermionic discretizations (e.g., Wilson, staggered) do not have exact zero-modes due to explicit breaking of chiral symmetry at finite lattice spacing

⇒ No exact zero-mode appears in the spectrum, and determinant fails to efficiently suppress non-zero charge configurations

$$\lambda_{\min} = m_f \longrightarrow m_f + i\lambda_{\text{would-be-zero}}$$

Would-be-zero modes and large lattice artifacts

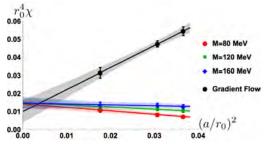
Bad suppression of non-zero charge configurations due to would-be-zero modes \implies large lattice artifacts affect the standard gluonic computation of χ \implies continuum extrapolation not under control (Bonati et al., 2018 [1807.07954])



Strategy followed in (Borsanyi et al., 2016 [1606.07494]) to reduce lattice artifacts affecting χ at high-T: reweighting configurations a posteriori with corresponding continuum lowest eigenvalues of D.

Fermionic topological charge

Different possible solution, which does not require further assumptions: switch, through the Index Theorem, to fermionic definitions of Q. Using the same "bad" operator to weight configurations and to count eigenmodes to measure Q may introduce smaller lattice artifacts.



Idea supported by results at T=0 (Alexandrou et al., 2017) [1709.06596]): Twisted Mass (TM) Wilson fermions employed for the Monte Carlo evolution and to measure χ through spectral projectors on eigenmodes of $D_{\rm TM} \longrightarrow {\rm improved\ scaling\ of\ } \chi$ towards the continuum!

Main results of our work [2208.08921]:

use staggered fermions spectral projectors definition (CB et al., 2019) [1908.11832]) to reduce lattice artifacts and study $\chi(T)$ at high T from full QCD simulations with staggered fermions.

Spectral projectors with staggered fermions

In the continuum, only zero-modes contribute to Q. On the lattice, spectral sum are extended up to a certain cut-off M:

$$Q = \sum_{\lambda = 0} u_{\lambda}^{\dagger} \gamma_5 u_{\lambda} \longrightarrow \sum_{|\lambda| \le M} u_{\lambda}^{\dagger} \Gamma_5 u_{\lambda} = \text{Tr}\{\Gamma_5 \mathbb{P}_M\},$$

$$\mathbb{P}_M = \sum_{|\lambda| \leq M} u_{\lambda} u_{\lambda}^{\dagger}, \quad iD_{\text{stag}} u_{\lambda} = \lambda u_{\lambda}, \quad \lambda \in \mathbb{R}.$$

$$Q_{0,\mathrm{SP}} = \frac{1}{n_t} \sum_{|\lambda| \le M} u_{\lambda}^{\dagger} \Gamma_5 u_{\lambda}$$

Taste degeneration leads to mode over-counting \implies divide spectral sum by the number of tastes $(n_t = 4)$

Lattice charge gets mult. renormalization $Z_O^{(\text{stag})} = Z_P/Z_S$, which can be derived from Ward identities for the flavor-singlet axial current:

$$Q_{\rm SP} = \frac{Z_P}{Z_S} Q_{0,\rm SP}, \qquad \left(\frac{Z_P}{Z_S}\right)^2 = \frac{\langle {\rm Tr}\{\mathbb{P}_M\}\rangle}{\langle {\rm Tr}\{\Gamma_5 \mathbb{P}_M \Gamma_5 \mathbb{P}_M\}\rangle},$$

 $\chi_{\rm SP} = \langle Q_{\rm SP}^2 \rangle / V$.

Choice of the cut-off mass M

The choice of the cut-off mass M is irrelevant in the continuum limit. Its renormalized value $M_R = M/Z_S$ must be kept constant as $a \to 0$ to guarantee $O(a^2)$ corrections:

$$\chi_{\rm SP}(a, M_R) = \chi + c_{\rm SP}(M_R)a^2 + o(a^2).$$

To avoid the direct computation of Z_S for each lattice spacing, one can observe that, for staggered fermions:

$$m_q^{(R)} = m_q/Z_S.$$

If a Line of Constant Physics (LCP) is known, it is sufficient to keep

$$M/m_q = M_R/m_q^{(R)}$$

constant along the LCP as $a \to 0$ to keep M_R constant.

How do we choose M_R ? One would like to have small corrections, i.e., $c_{\rm SP}(M_R) \ll c_{\rm gluo}.$

Choice of the cut-off mass M (T = 0 example)

Guiding principle: choose M/m_s to include all relevant Would-Be Zero-Modes (WBZMs) in spectral sums. E.g., look at chirality: $r_{\lambda} = |u_{\lambda}^{\dagger} \Gamma_5 u_{\lambda}| \text{ vs } |\lambda|/m_s$.

However, distinguishing between WBZMs and non-chiral modes is ambiguous →

- Choose a range of cut-offs to include "chiral enough" modes
- \bullet Perform continuum extrapolation for several values of M/m_s and check its stability

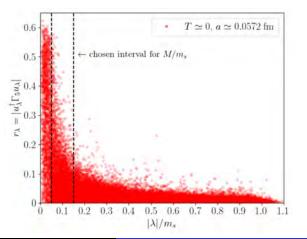


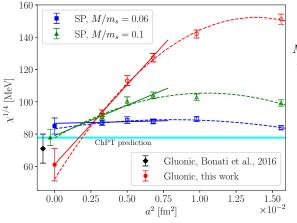
Fig:
$$N_f = 2 + 1$$
, $V = 48^4$.

Vertical lines \rightarrow range in which M/m_s is varied: $M/m_s \in [0.05, 0.15]$

Continuum limit of $\chi^{1/4}$ at T=0

Lattice Setup: $N_f = 2 + 1$ rooted stout staggered fermions at physical point. Expected continuum scaling for Spectral Projectors (SP):

$$\chi_{\rm SP}^{1/4}(a, M/m_s) = \chi^{1/4} + c_{\rm SP}(M/m_s)a^2 + o(a^2).$$



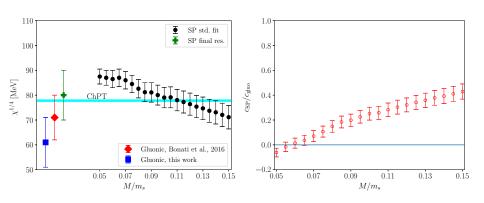
 M/m_s inside determined interval \rightarrow reduction of lattice artifacts: $c_{\rm SP}(0.06)/c_{\rm gluo} \sim 1 \cdot 10^{-2},$ $c_{\rm SP}(0.1)/c_{\rm gluo} \sim 3 \cdot 10^{-1}.$

Spectral determination: very good agreement with gluonic and NLO Chiral Perturbation Theory (ChPT) prediction.

Continuum extrapolation at T=0 vs M/m_s

Choosing M/m_s inside the determined range we observe:

- good agreement within the errors for determinations obtained for different values of M/m_s (Fig. on the left)
- significant reduction of lattice artifacts compared to the standard gluonic computation (Fig. on the right)



Choice of the cut-off mass M/m_s (finite T)

Same strategy as T=0: determine range for M/m_s from scatter plot of chirality $r_{\lambda} = |u_{\lambda}^{\dagger} \Gamma_5 u_{\lambda}| \text{ vs } |\lambda|/m_s$.

Finite T: more clear separation among WBZMs and non-chiral modes → however, completely unambiguous separation not possible

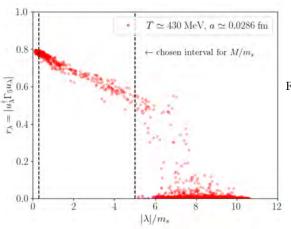


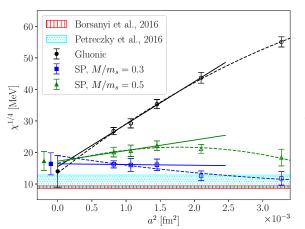
Fig: $N_f = 2 + 1$, $V = 48^3 \times 16$

Vertical lines \rightarrow range in which M/m_s is varied: $M/m_s \in [0.3, 5].$

Continuum limit of $\chi^{1/4}$ at finite T (T=430 MeV)

Same lattice setup of T=0 case. Also, same continuum-scaling function for Spectral Projectors (SP):

$$\chi_{\rm SP}^{1/4}(a, M/m_s) = \chi^{1/4} + c_{\rm SP}(M/m_s)a^2 + o(a^2).$$



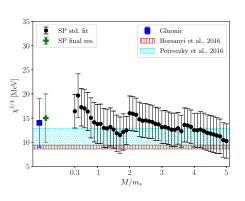
Spectral lattice artifacts are suppressed compared to the gluonic case when M/m_s is chosen within the determined interval:

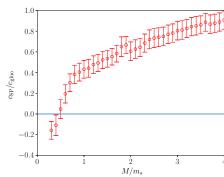
 $c_{\rm SP}(0.3)/c_{\rm gluo} \sim 5 \cdot 10^{-2}$, $c_{\rm SP}(0.5)/c_{\rm gluo} \sim 10^{-1}$.

Continuum extrapolation $T = 430 \text{ vs } M/m_s$

Choosing M/m_s inside the determined range we observe:

- good agreement within the errors for determinations obtained for different values of M/m_s (Fig. on the left)
- significant reduction of lattice artifacts compared to the standard gluonic computation can be achieved with suitable choice of M/m_s (Fig. on the right)

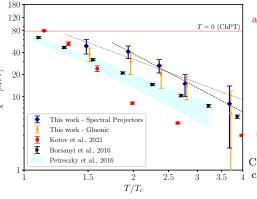




$\chi(T)$ for $T > T_c$ from staggered Spectral Projectors

We computed $\chi(T)$ for 200 MeV $\lesssim T \lesssim 600$ MeV. Comparison with Dilute Instanton Gas Approximation (DIGA):

DIGA:
$$\chi^{1/4}(T) \sim (T/T_c)^{-b}$$
, $b \simeq 2$ (3 flavors).



Data for $T \gtrsim 300$ MeV: very good agreement with DIGA-like power law:

$$b_{\rm SP} = 2.1(4), \qquad b_{\rm gluo} = 2.3(1.1)$$

If we also include also point for T = 230 MeV (lowest T explored):

$$b_{\rm SP} = 1.8(4), \qquad b_{\rm gluo} = 1.7(5)$$

Results compatible within errors, but slope clearly changes if T = 230 MeV is included/excluded.

Could be a (not conclusive) indication of a change in eff. exp. b between 200 and 300 MeV.

Clear consensus among different lattice determinations of $\chi(T)$ still to be reached \longrightarrow would be interesting to further inquire the region $T \lesssim 400 \text{ MeV}$

Further studies of the $T \leq 300$ MeV regime

Our results for $\chi(T)$ fit well with recent observations suggesting that high-T QCD is dominated by non-perturbative effects for $T_c \lesssim T \lesssim 300 \text{ MeV}$ (Alexandru & Horváth, 2019 [1906.08047], 2021 [2103.05607]; Kotov et al., 2021 [2105.09842]; Cardinali et al. 2021 [2107.02745])

Further investigation: computation of staggered spectral density on our full QCD ensembles at T=230 MeV. Also motivated by results of [1906.08047]: $200 \text{ MeV} < T_{IR} < 250 \text{ MeV}$

(work in progress in collaboration with A. Alexandru, M. D'Elia & I. Horváth)

$$\rho(\lambda) = \frac{\langle \# \lambda \in \operatorname{Bin} \rangle}{n_t V \Delta \lambda}, \qquad \operatorname{Bin} = \left[\lambda - \frac{\Delta \lambda}{2}, \lambda + \frac{\Delta \lambda}{2}\right].$$

An eigenvalue λ of $iD_{\rm stag}$ renormalizes as $m_q \to \text{use same } \Delta \lambda/m_s$ for each ensemble, with m_s drawn from LCP at physical point:

$$m_s \rho(\lambda/m_s) = \frac{\langle \# \lambda/m_s \in \text{Bin}/m_s \rangle}{n_t V(\Delta \lambda/m_s)}$$

is expected to be a properly renormalized physical quantity.

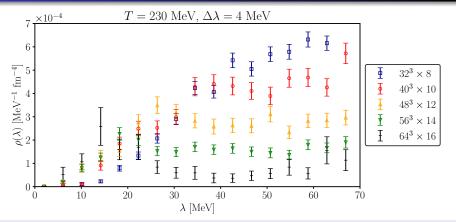
Staggered spectral density in full QCD - 1

- Same spatial volume $V_s \simeq (3.4 \text{ fm})^3$
- Lattice spacing ranging from ~ 0.1 fm to ~ 0.054 fm
- = 92.2(1.0) MeV [2111.09849] used to express $\Delta\lambda$ and $V\rho(\lambda)$ in phys. units



Spectral density is found to be a monotonically rising function in the region above ~ 80 MeV. Lattice artifacts appear more pronounced below ~ 150 MeV.

Staggered spectral density in full QCD - 2



- Between ~ 20 and ~ 70 MeV, $\rho(\lambda)$ is almost constant, and its value decreases as we approach the continuum limit
- Below ~ 20 MeV lattice artifacts go in the opposite direction, and $\rho(\lambda)$ grows as a is reduced
- These features fit well with results of [1906.08047] and [2103.05607] obtained for the IR phase with D_{overlap} , and also with well-established results on localitation/delocalization transition in the Dirac spectrum (Giordano & Kovacs, 2021 [2104.14388])

Conclusions

Summary of the talk:

- Spectral Projectors (SP) provide a theoretically well-posed method to define the topological susceptibility on the lattice
- Spectral definition of χ allows to control the magnitude of lattice artifacts through a smart choice of the cut-off mass M also at non-zero temperature
- SP results are well described by DIGA law $\chi^{1/4}(T) \sim (T/T_c)^{-2}$ for $T \gtrsim 300$ MeV
- Possible deviations from DIGA-like scaling possibly related to strong non-perturbative effects in the $T \leq 300$ MeV regime \longrightarrow deserves further studies

Future outlooks

- computing χ for $T \geq 700$ MeV on typical lattices requires $a \sim 0.01$ fm \Longrightarrow severe Topological Slowing Down. Promising candidate algorithm: Parallel Tempering on Boundary Conditions (Hasenbusch, 2017 [1706.04443]; CB et al., 2021 [2012.14000])
- Further studies of the spectral density for T=230 MeV (larger volume, continuum limit, staggered vs overlap spectral density comparison ...)

Rare topological fluctuations and multicanonic algorithm

Since χ is suppressed at high T, on affordable volumes: $\langle Q^2 \rangle = \chi V \ll 1$ $\implies Q$ fluctuations extremely rare during Monte Carlo evolution.

Adopted solution: multicanonic algorithm.

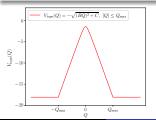
$$S_{\text{QCD}}^{(L)} \to S_{\text{QCD}}^{(L)} + V_{\text{topo}}(Q_{\text{mc}})$$

$$\Longrightarrow P \propto e^{-S_{\text{QCD}}^{(L)}} \to P_{\text{mc}} \propto e^{-S_{\text{QCD}}^{(L)}} e^{-V_{\text{topo}}(Q_{\text{mc}})}$$

Idea: add bias potential to the action to enhance the probability of visiting suppressed topological sectors.

Mean values $\langle \rangle$ with respect to P recovered through reweighting:

$$\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O}e^{V_{\rm topo}(Q_{\rm mc})} \rangle_{\rm mc}}{\langle e^{V_{\rm topo}(Q_{\rm mc})} \rangle_{\rm mc}}, \qquad \langle \mathcal{O} \rangle_{\rm mc} \rightarrow \text{ mean value with respect to } P_{\rm mc}$$



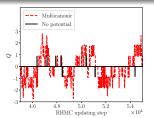


Fig: $32^3 \times 8$ lattice, T = 430 MeV. $a \simeq 0.057$ fm.

 $Q_{\rm mc} \rightarrow {\rm clover\ charge}$ computed on stout-smeared fields after $n_{\text{stout}} = 10$ steps.