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OVERVIEW
• Dirac spectrum as a glue probe

• IR phase

• IR dimension for low-lying Dirac modes

• Localization for low-lying Dirac modes

• Summary and outlook



“QCD-LIKE” THEORIES
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QCD with SU(3) color and various numbers of quark 
flavors

The spectrum of the covariant derivative D(A) 
operator will be used as a probe for the glue field A
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LATTICE QCD

• Non-perturbative formulation of QCD.

• Quark and gluon fields are sampled on a discrete lattice: 
quarks at sites and glue on links.

• Discretization of the quark covariant derivative is done 
using overlap formulation.

• This preserves chiral symmetry exactly even at finite 
lattice spacing and can be used to differentiate precisely 
zero-modes from near zero modes.
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DIRAC SPECTRUM AT T=0

λ

ρ

(A) confined
vχ broken

• At zero temperature the spectrum is 
monotonic with a non-zero value in 
the infrared

• All Dirac eigenmodes are delocalized, 
including the deep infrared modes 

• Banks-Casher relation connects the 
density of infrared modes to the chiral 
condensate
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THERMAL PHASE TRANSITION
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NEAR-ZERO PEAK MODES
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NEAR-ZERO PEAK MODES
Dirac spectra around 
deconfinment

• We verified that the peak survives the 
thermodynamic limit and continuum limit

• We found that the peak appears above 
the deconfinement transition

• For pure glue theory the transition is 
sharp and coincides with Tc
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IR PHASE
Dirac spectra for QCD like 
theories

• Pure gauge theories at temperature 
above Tc have unusual behavior

• The same qualitative behavior is 
present with dynamical quarks

• Similar behavior is visible in theories 
with Nf=12 light quarks at T=0
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IR PHASE
Low-lying Dirac spectrum 
properties

• The spectrum separates in two modes: 
the “bulk” and an IR peak

• As we increase the volume the peak 
becomes more pronounced

• The density in the IR peak seems to be to 
a very good approximation ρ(λ) ∝ 1/λ
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FIG. 2. IR dependence ⇢(�) / 1/� emerging in pgQCD at T = 1.12Tc and UV cuto↵ a = 0.085 fm.

(iv) Given its perturbative nature, UV phase should only ensue when thermal agitation

mostly engages perturbative scales. In that vein, our expectation is that TUV > 1GeV (Fig. 1).

Its precise determination in lattice simulations is challenging in part because the minimal

system size needed to detect the IR phase grows with temperature (Appendix A).

2. Lattice Evidence. Technical details of our simulations are summarized in Appendix C.

To discuss the results, we start with pgQCD where needed volumes are more readily accessible.

In Ref. [19], a peak at the infrared end of Euclidean Dirac spectral density has been observed

in pgQCD above Tc. Only recently it was shown [14] that this feature is not a regularization

artifact. Here we present evidence that ⇢(�) / ��1 in IR which, together with ⇢(�) / �3 in

UV, generates a bimodal structure facilitating scale invariance at both ends of the spectrum.

To that end, we study the spectrum of overlap Dirac operator on equilibrium backgrounds.

A useful quantifier is the volume density of eigenmodes in spectral range [�, T ], namely

�(�, T ) ⌘
Z T

�

⇢(!) d! �! c(T ) ln
T

�
for ⇢(�) =

c

�
(1)

If ⇢(�) / ��1 for � < T , a straight line passing through origin is obtained in variable

x = lnT/� � 0. Note that �=T corresponds to x=0 and IR is approached by increasing x.

If ⇢(�) / ��1 only for � < ⇤IR(T ) < T , a y-shifted linear segment appears for x > lnT/⇤IR.

In Fig. 2 we show �(x) in pgQCD on increasing volumes (UV cuto↵ a= 0.085 fm) at

T =1.12Tc. Each case involves an easily identifiable, approximately linear segment extending

from origin to increasingly IR scales as the IR cuto↵ L increases. Leveling o↵ at larger x

signals the IR edge of the spectrum. On the largest volume (L = 5.4 fm), the 1/� behavior

AA and I. Horvath, Phys. Rev. D100 (2019), no. 9 09450



IR DIMENSION
Eigenmode support scaling 

• The “support” for each eigenvector, is roughly the 
number of points N where  is above average

• The IR dimension is defined by the scaling with volume 
(at fixed UV cutoff): 

• We find that the dimension depends on the spectral 
band: bulk (~3), gap (~1), IR peak (2), zero modes 
(~3)

• The transition between bulk and gap is close to the 
mobility edge and we conjecture that they coincide in 
the infinite volume limit
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MODE EXTENT
Eigenmode extent 

• The “extent” of each eigenmode is given by the weighted 
average distance from the maximum point

• The weight is controlled by the local magnitude of the  
eigenvector 

• The average extent is 

• In the “gap” the size of the modes seems volume 
independent, consistent with localized modes

• For both the “bulk” and “peak” modes the extent varies 
with the volume

p(x) = |ψ(x) |2

ℓ = ∑
x

p(x) |x − x* |
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MODE INDEX
Coefficient of scaling

• To characterize the localization properties of the 
modes we define a “mode index” that quantifies the 
scaling of the mode size with the size of the box

• The mode index is defined via  with 

• The index is calculated by fitting the mode extent as 
a function of the size of the box

• The fits here correspond to typical spectral bands in 
the “peak”, the “gap”, and close to the mobility edge

ℓ ∝ Lγ

0 ≤ γ ≤ 1
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MODE INDEX
Coefficient of scaling as a function of 

• We calculated the index as a function of the spectral 
band

• In the “gap” where the modes are localized, the index is 0

• For both the “bulk” modes higher than , the index is 1, 
as expected for the “plane-wave” like modes

• Similarly for zero-modes the index is 1, since these 
modes are delocalized

• We note that for modes around  the index we 
computed is different from 1 (similarly for )
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INDEX — THERMODYNAMIC LIMIT
Sliding fit window

• The results for gamma index were computed using fits for all 
volumes available

• In the transition regions a more detailed view is required to 
estimate the infinite volume limit

• Here we perform the fits using a sliding window, using 4 
consecutive volumes with increasing size
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INDEX — THERMODYNAMIC LIMIT
Sliding fit window

• The results for gamma index were computed using fits for all 
volumes available

• In the transition regions a more detailed view is required to 
estimate the infinite volume limit

• Here we perform the fits using a sliding window, using 4 
consecutive volumes with increasing size
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INDEX — THERMODYNAMIC LIMIT
Sliding fit window

• The results for gamma index were computed using fits for all 
volumes available

• In the transition regions a more detailed view is required to 
estimate the infinite volume limit

• Here we perform the fits using a sliding window, using 4 
consecutive volumes with increasing size
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INDEX — THERMODYNAMIC LIMIT
Sliding fit window

• The results for gamma index were computed using fits for all 
volumes available

• In the transition regions a more detailed view is required to 
estimate the infinite volume limit

• Here we perform the fits using a sliding window, using 4 
consecutive volumes with increasing size
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INDEX — THERMODYNAMIC LIMIT
Gamma index from the ratio method

• To double-check our results we computed the index using 
ration method

• We use three volume pairs (24,48), (28,56), and (32,64) and 
we found results that are compatible with the fitted value

γ ≡
1

log 2
log

ℓ(2L)
ℓ(L)
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INDEX — THERMODYNAMIC LIMIT
Conjectured infinite volume limit

• The “bulk” modes and the zero-modes scale linearly with the 
size of the box

• The “gap” modes are localized, that is do not depend on the 
box size 

• The critical regions at  and  seem to be 
delocalized but their radius scales with a power lower than 1.

λ = 0+ λ ≈ λA
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CONJECTURED PHASE DIAGRAM
Localized/delocalized spectrum

• At low temperature the eigenmodes of the Dirac operator are all 
delocalized

• For high temperature, above TIR, localized modes appear

• The localized modes are below the mobility edge separated from the 
“bulk” modes by an Anderson like transition at 

• Our data indicates that there is a infinitesimal thin strip of delocalized 
modes also at 

• The localized modes are then separated from the delocalized modes by 
two edges:  that increases with the temperature and the other one 
that stays in deep infrared at 

• It is not yet clear whether the localized modes disappear at a high 
temperature or whether they are present at all temperatures

λ = λA

λ = 0+

λA
λ = 0+

AA and I. Horvath, Anderson Metal-to-Critical Transition in QCD, arXiv:2110.04833



PUZZLE FOR THE “GAP” MODES
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ANDERSON MODEL
Disorder induced metal-insulator transition

• Electron hopping in a random potential

• The on-site random potential  is uniformly distributed over 
[-1/2,1/2]

• For  the entire single-particle spectrum is 
delocalized

• For  a localized band of modes opens up around 

• Using a pair of volume , we compute the scaling 
dimension  for the eigenmodes at 

H = ∑
⟨x,y⟩

(cxc†
y + hc) + Wϵ∑

x

cxc†
x

ϵ

W < Wc = 16.543

W > Wc λ = 0

L = 40/80
dIR λ = 0 dIR[L] =

log N*(L)/N*(L/2)
log 2
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ANDERSON MODEL
Mode dimension in localized region

• For  we expect the modes to be localized and 
have 

• For volume pair  we find the dimension 

• One possibility is that this is a finite volume artifact

• For  (deep in the localized region) we 
compute  for larger volumes, in the range 

• The dimension decreases with increasing volume but it is 
not clear that it will go to zero in the thermodynamic limit

W > Wc
dIR ≈ 0

L = 40/80 dIR ≈ 1

W = 32 ≫ Wc
dIR

L = 10 − 160

dIR[L] =
log N*(L)/N*(L/2)

log 2
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ANDERSON MODEL
Spectral resolution for dimension

• The structure of the support for the probability distribution can be resolved 
component-by-component

• Consider the probability of each point in the entire volume  with 

• Lower dimensionality regions will have stronger components if they contribute a finite 
probability

• If we partition the total probability in bins, we define  the number of points in the 
support  to correspond to the probability bin 

• The scaling with the volume of this support defines the dimension for each bin

• In the “shovel” example here we have a one dimensional component of probability  
and a two-dimensional component of probability 

• The dimension  can be turned into a spectral decomposition:  vs 

p1 > p2 > … > pN

∑ pi = 1

N*(q, q + Δq) [q, q + Δq]

𝒫
1 − 𝒫

d(q) dq(d)/dd d

0 1

1

2

3

d

L
a

q

1−P

P

P!h

!b

0 1 2 3

P(d) =
dq(d)

dd

I. Horvath and P. Markoš, Topological Dimensions from Disorder and Quantum Mechanics?, arxiv:2212.09806



ANDERSON MODEL
Spectral resolution for dimension (critical modes)

• For criticality ( ) the decomposition was worked out by 
Ivan and Peter Markoš [arxiv:2212.09806]

• They found that the support has components that scale with 
different dimensions

• A large component scales with dimension 2, but there seems to 
be other components that scale with powers between 4/3 and 
8/3

• In this case  represents that maximal dimension in the range, 
 as determined by Ivan and Peter Markoš earlier [arxiv: 

2110.11266]

W = Wc
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dIR ≈ 8/3
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ANDERSON MODEL
Spectral resolution for dimension 
(localized modes)

• If we focus on the modes in the localized phase 
( ) we find that the spectral resolution implies 
that the entire support is zero dimensional

• The dimension for all but the last probability bin seems 
to converge to zero in the thermodynamic limit

• This implies that the  in the thermodynamic 
limit, as expected for the localized modes
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ANDERSON MODEL
Spectral resolution for dimension 
(localized modes)

• If we focus on the modes in the localized phase 
( ) we find that the spectral resolution implies 
that the entire support is zero dimensional

• The dimension for all but the last probability bin seems 
to converge to zero in the thermodynamic limit

• This implies that the  in the thermodynamic 
limit, as expected for the localized modes

W = 24

dIR = 0

L=20

L=40

L=80

L=160

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.99990 0.99992 0.99994 0.99996 0.99998 1.00000
0

1

2

3

4

5



ANDERSON MODEL
Spectral resolution for dimension (localized 
modes)

• If we focus on the modes in the localized phase ( ) we 
find that the spectral resolution implies that the entire support 
is zero dimensional

• The dimension for all but the last probability bin seems to 
converge to zero in the thermodynamic limit

• This implies that the  in the thermodynamic limit, as 
expected for the localized modes

• The finite volume effects are much milder for the spectral 
resolution
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QCD IN THE IR PHASE
Spectral resolution for dimension 
(localized modes)

• We focus on the “gap” region, the depleted 
spectral region

• The spectral resolution for  is 
similar to the localized mode phase in the 
Anderson model

• This suggests that the  in the 
thermodynamic limit and the modes are localized

λ ∈ [200,300] MeV
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spectral region
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TAKE HOME
• At high temperature, in the IR phase, the deep infrared modes of the Dirac operator are 

delocalized

• The transition from low to high temperature for the IR Dirac spectrum is not delocalized-
localized (metal-insulator in Anderson language)

• The IR modes remain delocalized, but their nature is more akin with the eigenvectors at the 
mobility edge

• The modes in the peak are delocalized and are likely to support long range correlations in 
glue fluctuations

• We carried out this calculation for pure glue system where we can control the parameters 
accurately, but there are strong indications that this happens for other QCD like systems (see 
later talks) 

• The modes in the “gap” are localized with  — the discrepancy between scaling of 
eigenmodes’ size and their support is a finite volume artifact
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