
1. Introduction
Lightning discharges emit electromagnetic pulses in a broad range of frequencies with a peak of radiated 
power in the very low frequency (VLF) range. The lightning generated VLF signals called atmospherics 
(or sferics for short) propagate over thousands of kilometers, being reflected from the boundaries of the 
Earth-ionosphere waveguide, which is formed by the conductive ground or ocean on one side and by the 
bottom of the conductive ionosphere on the other side. These signals are routinely recorded and analyzed 
for various purposes. Obtained lightning flash rates and flash densities can be used to derive thundercloud 
properties (Deierling & Petersen, 2008; Huffines & Orville, 1999; Williams et al., 2000), to predict the sever-
ity of tornadic storms (Chronis et al., 2015) and hurricanes (Price et al., 2009), or to estimate amounts of 
lightning-produced NOx (Schumann & Huntrieser, 2009).

The characteristics of electromagnetic signals emitted by lightning and propagating in the Earth-ionosphere 
waveguide reflect the properties of the waveguide. Its upper boundary—the D-region of the ionosphere 
at altitudes between 50 and 90 km—is influenced from above by the Sun. The altitude is reflected by pro-
nounced day/night differences of the properties of the ionospheric D-region or by the effects of solar flares 
(Grubor et al., 2008). The D-region can also be modified from below by powerful meteorological (Haldoupis 
et al., 2013; Inan et al., 2010; Kolmašová et al., 2021; Mezentsev et al., 2018) or seismogenic sources (Píša 
et al., 2013; Pulinets & Boyarchuk, 2005). Investigation of this region of the ionosphere is difficult, as it is 
not accessible to orbiting spacecraft, and cannot be monitored easily by ionosondes or scatter radars (Thom-
son & McRae, 2009). The available balloon or rocket measurements provide only temporally and spatially 
limited information about the properties of the ionospheric D-layer. As there are about 50 lightning flashes 
which hit the ground every second (Christian et al., 2003), analysis of the propagation of lightning related 
signals can serve as a tool for the investigation of the bottom of the ionosphere (Cummer et al., 1998; Han 
& Cummer, 2010; Said et al., 2010) also providing useful information for propagation models of VLF radio 
waves (Jacobson et al., 2021; Rapoport et al., 2020).
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According to the waveguide theory (Budden, 1961), a lightning generated signal excites different transmis-
sion waveguide modes. A zero-order mode propagates in the waveguide at all frequencies. Higher-order 
modes cannot travel below their critical frequencies. Night-side sferics usually show typical frequency dis-
persion signatures which produce clicking sounds in the loudspeakers of the receivers and are therefore 
known as “tweeks” (Helliwell, 1965). Ionospheric reflection heights, propagation distances and relevant 
electron densities can be derived from the frequency-time characteristics of tweeks. This method has there-
fore been used in several case studies to investigate the morphology of the nighttime (Kumar et al., 2008; 
Maurya et al., 2012; Ohya et al., 2003; Tan, 2016) and exceptionally also the daytime (Ohya et al., 2015; 
Santolík & Kolmašová, 2017) D-region of the ionosphere.

A large amount of data is needed for statistical studies to confirm the observed trends. Machine learning 
techniques can significantly simplify the detection and analysis of the sferics and tweeks or whistlers (Harid 
et al., 2021) recorded in the form of frequency-time spectrograms. The research presented below focuses on 
an automatic method for detection and localization of specific signals within frequency-time spectrograms 
based on convolutional neural networks (LeCun et al., 2015). We have employed a very effective approach 
of computer vision with a focus on bounding box regression. To select the most effective approach, we stud-
ied Konan et al. (2020), who provide the implementation of three different methods for detection and local-
ization of whistler radio waves. The first method called CCSW used the whistler's dispersion approximation 
developed by Bernard (1973) and applied for whistler wave detection in Lichtenberger et al. (2008). The next 
two methods—SDCNN (Chang et al., 2019) and YOLOv3 (Redmon et al., 2016) are based on convolutional 
neural networks and proved their effectiveness for the detection of events. In O'Shea et al. (2017), the au-
thors describe the application of the smallest YOLO architecture for the radio signal detection. This research 
introduced an approach to train a highly effective radio signal detection method that achieves higher levels 
of contextual understanding than traditional energy thresholding-based signal detection schemes. The uni-
versal abilities of deep learning architecture can be easily seen also in Fanioudakis and Potamitis (2017), 
which focuses on reliable detection and segmentation of bird vocalizations as recorded in the open field. 
Input data are in the form of audio spectrogram of bird vocalizations. The researchers in this area imple-
mented automatized monitoring of multiple bird subspecies using two approaches. In the first case, they 
developed a combination of DenseNets (Huang et al., 2018) and YOLOv2 architecture. In the second ap-
proach, they applied U-net architecture (Ronneberger et al., 2015). The use of both techniques has proven 
to be very effective. The existing works provided a technical view of the methods and their practical aspects, 
for example, how to process inputs, annotations, and the basic setup of the methods. According to the de-
scribed studies, YOLO architecture provides a more robust solution and is suitable for our needs.

The paper is organized as follows: Section 2 provides a description of our frequency-time spectrograms, 
events, and the process of annotation; Section 3 describes the developed method and consists of two parts. 
The first part presents automatic event detection on spectrograms based on a deep learning approach. The 
second part describes post-processing—deterministic methods of extraction of the required details from 
spectrograms. Section 4 presents the performance metrics used in the experiments and discusses the results. 
The main findings are summarized in Section 5.

2. Data
In this work, we use the frequency-time spectrograms calculated from the 3-component electromagnetic 
waveforms recorded by the ELMAVAN-G instrument (Santolík & Kolmašová, 2017). The instrument was 
developed by the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic for the 
Resonance satellite project (Mogilevsky et al., 2012) for the Earth's radiation belts. The instrument consists 
of a radio receiver coupled with two perpendicular magnetic loop antennas with 12 turns, each with an 
area of 4 m2 and a spherical electric antenna with a diameter of 10 cm, located 2 m above the ground. The 
ELMAVAN-G instrument is installed on the top of La Grande Montagne near the town of Rustrel in France 
in an electromagnetically quiet environment of the external site of the Laboratoire Souterrain a Bas Bruit 
(LSBB). The vertical electric field component and two components of the horizontal magnetic field are 
sampled at 50 kHz; the duration of each 3-component waveform snapshot is 144 s. The snapshots are stored 
in the internal memory of the instrument with a cadence of 5 min.
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The data set for machine learning technique described in Section 3 is composed of images of frequency-time 
spectrograms generated for each snapshot. Each image shows a 1-s long spectrogram spanning the frequen-
cy range from 0 to 25 kHz. The spectrograms are obtained from waveform data using a 256 point FFT with 
94% overlapping. Raw digitized data without any pre-processing are used for calculating the spectra. In case 
of a presence of interferences in the received signal a cleaning procedure can be applied or the color scale 
of the spectrograms might be adapted. Nine images are generated for each 144-s long snapshot, containing 
time intervals when the strongest electromagnetic emissions occurred within it. These strong emissions 
correspond predominantly to broadband lightning sferics and tweeks and usually occupy a substantial part 
of the whole frequency band. Narrowband electromagnetic signals emitted by powerful VLF transmitters 
dedicated for communication with submarines are also well recognizable above 16 kHz. For the future sta-
tistical scientific analysis all available data will be analyzed. As the yearly amount of data exceeds 15 million 
spectrogram images, machine learning techniques could provide a helpful tool for automatic detection of 
lightning events in individual spectrograms.

The data preparation phase consisted of two steps: extracting spectrograms with the necessary information 
from the stored data and manual labeling of target events within the created crowdsourcing annotation pro-
ject. Figure 1 displays the example of spectrogram images. We obtained measurement data for the exact sec-
ond with the strongest recorded emissions by parsing the original image. The most significant events are re-
corded in Channel 2, so this channel became the basis for our method. Therefore, we cropped spectrograms 

Figure 1. Sample of one page from pdf provided by the initial processing of ELMAVAN-G instrument. Every spectrogram displays one second of the measured 
interval (144 s) with the strongest emission. In the preprocessing phase, we cropped spectrograms from Channel 2 and used them to train our models. See text 
for more details on processing of spectrogram pdf file.



Earth and Space Science

MASLEJ-KREŠŇÁKOVÁ ET AL.

10.1029/2021EA002007

4 of 14

and extracted only the selected channel in jpg format. The names of images contain information about the 
starting time of the spectrogram in the form YYYYMMDD_HHMMSS.

Figure 1 also shows horizontal lines that are on each spectrogram at the position 16–25 kHz. The horizontal 
lines are signals from low-frequency power transmitters used to communicate with submarines and have 
nothing to do with the monitored events. Based on this fact, we cropped this part of the spectrogram to 
prevent possible problems in the neural network's learning process and we decided to use only frequencies 
lower than 16 kHz from each spectrogram to annotate and train the neural network. At the same time, we 
kept the scale on the right side of the pictures for further analysis (see Figure 2). We randomly selected 2,500 
spectrograms from the four warmest months of the year (July - September) in 2015–2019. The main reason 
is that storm activity is most intense in Europe during these months. The images prepared in this way be-
came the source for the next step—data annotation.

For supervised learning of neural networks, it is needed to annotate input data. In our case, the annotated 
data set is a set of spectrograms with labeled events, based on which the model should extract the necessary 
features for their detection. Because we had a set of spectrogram images without annotations, we used the 
crowdsourcing approach to obtain them. Brabham (2008) defines crowdsourcing as delegating a problem to 
a larger mass of unknown people to solve it. We created an annotation project on the Zooniverse platform 
(zooniverse.org, last access: Sep 1, 2021), where we obtained annotations for training the neural network. The 
Zooniverse platform focuses on helping researchers who need effective collaboration in their research activ-
ities. The main advantage of this platform is that it allows almost anyone to participate in research activities. 
Also, the platform does not require additional education or hardware accessories for its usage. However, it is 
essential to provide at least some tutorials or hands-on sessions for people that participate in the specific pro-
ject. More than 50 students from the Faculty of Electrical Engineering and Informatics of the Technical Uni-
versity in Košice participated in this crowdsourcing project and provided us with a sufficient amount of anno-
tations. In the first phase of the annotation process, it was necessary to indicate whether the event is sferic or 
a tweek (with a specified number of modes). In the second part, it was annotated whether the signal reaches 
frequencies below 2 kHz. Figure 3 provides examples of annotated events and information in spectrograms.

Figure 2. Example of a cropped spectrogram image, which is ready as an input for the training of our neural network model.

Figure 3. Example of events for the annotation. The first picture represents a tweek that reaches frequency areas 
below 2 kHz and has three modes. The second and third images provide an example of sferics, where one of them has 
detected emission below 2 kHz, and another one does not.

http://zooniverse.org
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After visual verification, we used 2,300 images in the final data set, with labeled events of 3,200 tweeks 
and 19,000 sferics. Figure  4 provides an example of the acquired annotations. The Zooniverse platform 
generates annotation information in the form of JSON files. The values from the JSON file represent output 
parameters values as class x_center y_center width height, where the first value is the class of event (sferic 
or tweek), the other two values represent the coordinates for the center of the labeling bounding box, then 
the width and height of the box. For the training process, we normalized bounding box data by scaling be-
tween 0 and 1. The last step of data pre-processing is dividing the final input data into training, validation, 
and testing subsets. Table 1 provides the number of images and events in each subset.

3. Methods
3.1. Automatic Events Detection

Our main goal is to provide a method for the automatic detection of events in frequency-time spectro-
grams. We decided to apply methods known from the field of computer vision based on object detection 
algorithms. Such techniques automatically process the images and provide coordinates of the bounding 
boxes around the objects and their class in the image. The most successful approaches from recent years 
have been deep learning methods based on deep neural network architectures (L. Liu et al., 2020). Several 
multi-purpose architectures are available, and most of them use convolutional neural networks (CNN, 
LeCun et al., 2015).

One of the successful object detection architectures is You Only Look Once (YOLO, Redmon et al., 2016), 
which is based on fully convolutional neural network architecture to predict bounding boxes and their 
class directly from whole input images. YOLO divides the image into a grid in which it indicates the bound-
ary rectangles of objects and the probability of their classification. The main advantage of using YOLO is 
that we do not need any complex chaining of different processes for detection. After training the model 
on the input training data set, the algorithm can detect objects in real-time. Another advantage is that this 
architecture is invariant with respect to the size of the input image. Because YOLO can predict classes and 
bounding boxes in a single run of the algorithm, this method becomes incomparably faster than other al-
gorithms designed to solve similar problems. The different applications prove that lower versions of YOLO 
also achieve excellent results in the detection of objects on spectrograms (Fanioudakis & Potamitis, 2017; 
Konan et  al.,  2020; O'Shea et  al.,  2017). Currently, the most recent version is YOLO version 5 (Jocher 
et al., 2020), which we decided to use for the processing of our data set. The referenced model we used for 

training and testing our lightning detection approach is YOLOv5s, which 
consists of 7.3 million parameters and 224 layers.

The YOLO network consists of three main parts: Backbone, Neck, and 
Head. The Backbone consists of a convolutional neural network that 
extracts features from images. YOLOv5 implements Cross Stage Partial 
Networks (CSP, Wang et al., 2020) for the CNN Backbone. CSP architec-
tures are built on DenseNet (Huang et al., 2017), which suppresses the 
vanishing gradient problem (Hochreiter, 1998) and reduces the number 
of training parameters. Another subpart of the Backbone is also Spatial 
Pyramid Pooling (SPP, He et al., 2015), which eliminates the fixed-size 
constraints of the network. YOLOv5 implements the Path Aggregation 
Network (PANet, S. Liu et al., 2018) as the Neck for the aggregation of 
extracted features. PANet consists of a series of layers used to enhance the 
process of instance segmentation by preserving spatial information. The 
final output part is the Head which focuses primarily on detection—pre-

Figure 4. Example of annotations obtained from the Zooniverse project. Dark blue bounding boxes represent tweeks and light blue boxes sferics.

Set Images Events Sferics Tweeks

Training 1,566 11,244 9,691 1,553

Validation 396 2,767 2,355 412

Testing 219 2,135 1,890 245

Note. The displayed table provides the number of images and events 
(including the subtype numbers) selected in the training, validation, and 
testing subsets.

Table 1 
For the Machine Learning Process, We Split Spectrogram Images From the 
Input Data Into Several Subsets
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dicting the bounding box and class. Figure 5 depicts the whole YOLOv5 
architecture.

For the adaption of the YOLOv5s model for our task, we performed ex-
periments with different setups and changes to the default model. Ta-
ble  2 provides hyper-parameter settings used for the training process, 
and Figure 6 displays the learning process parameters and their changes 
during the training epochs. We reduced the size of the input image to 
1184 × 160 pixels (input size must be a multiple of 32), and we set a rec-
tangular inference. This value was optimal in the ratio of performance 
and hardware load. We used GPU Quadro RTX 4000 for the training of 
models. For traditional tasks, YOLO also offers the opportunity to use 
pre-trained models for classifying images with objects from the ordinary 
world. In our case, we did not use this option because we have specific 
inputs—spectrograms.

The YOLO algorithm strategy for detecting of bounding boxes is to di-
vide each of the images into a grid, usually 19 × 19. Based on this grid, 
each of the cells can predict a certain number of boxes. In order to detect 
bounding boxes, the YOLO network predicts them as deviations from 
a list of anchor box dimensions with the help of K-means and genetic 
algorithms introduced by Redmon and Farhadi (2018) in YOLO version 
3. This part is crucial for solving tasks on custom datasets because the 
size distributions of our bounding boxes (narrow and long) are different 
from the box anchors in the original object detection data set. YOLO 
automatically re-learns anchor boxes from the new data set whenever 
we apply it on custom datasets. Subsequently, after the initial division 
of classes, it is necessary to perform another step known as Non-Max-
imum Suppression (NMS, Neubeck & Van Gool, 2006), which reduces 
boxes that are too close to each other based on the Intersection over 
Union—IoU metric (see Figure 7). This step removes boxes whose IoU 
is higher than the set IoU threshold. After the whole detection process, 
only the most accurate box for each object remains as output (Redmon 
et al., 2016).

There are three main settings for the detection phase in YOLO, one is the 
image size, and the other two are thresholds for the selection of bounding 
boxes. Table 3 displays our final setup of these parameters. For non-max-
imum suppression, we used the default IoU threshold value of 0.45 to 
reduce overlapping bounding boxes. However, we examined many exper-
iments where we monitored the results based on the object confidence 
threshold. This value helped us to regulate the sensitivity of the detector, 
and it is a crucial setting. When the object confidence threshold value is 
small, the model detects more events. Figure 8 depicts such a case, where 
the object confidence threshold value was 0.1. On the other hand, the 
model could not detect positive events at a very high value. An example 
of setting the threshold to 0.45 is displayed in Figure 9. Based on sever-
al tests, we selected 0.3 as the optimal value for the object confidence 
threshold. Figure 10 provides an example of the prediction using this val-
ue of the threshold.

The setup of a threshold value for the detector's sensitivity can be seen 
as a user variable and is based on the expectations of a particular appli-
cation. In our case, the threshold was selected towards the need to detect 
stronger signals in spectrograms. In other applications, the same model 
can detect weaker signals as detected events, using a lower threshold. Of 

Figure 5. YOLOv5 architecture. The YOLO network consists of three 
main parts: Backbone, Neck, and Head displayed at the top part of the 
figure. Part Backbone and Neck use blocks displayed at the bottom part of 
the figure, where is described the architecture of blocks: Focus, CONV, C3 
and SPP.

Hyper-parameters Values

Image size 1184 × 160

Rectangular true

Epochs 400

Batch size 4

Table 2 
Settings of the YOLOv5s Parameters for Training the Model
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course, when very low thresholds are used, the problem with the false detections can arise more often due 
to the mixup with the background signal (low ratio between weak event and background signal).

The output of each detection of the YOLO algorithm consists of four values: the center of the box, the width 
and height of the box to delimit the detected object, the class of the predicted object, and the probability of 
prediction. In our case, every bounding box is a rectangle in spectrogram connected to a lightning event, 
which is a sferic or tweek.

3.2. Post-Processing

We used predictions from the YOLO network for two purposes—to provide basic information in the out-
put table with detected events and as input for tasks to extract additional details of events. The output 
data table with detected events contains columns date and second extracted from the part of the jpg file 
name. We created column tweek based on the output of the neural network, which represents a binary 
value for whether the event is tweek (1) or sferic (0). For the detection of the precise time of event and 
occurrence of their emission under 2  kHz, it was necessary to use post-processing to obtain columns 
millisecond and f_min<2kHz. In both cases, we worked only with the red channel of the image for the 
decision.

First, the millisecond column contains the exact millisecond at which the lightning event occurred, 
represented by the imaginary center of the event. Since the most intensive part of the given event is 
not always in the middle of the prediction box (the highest intensity of tweeks is usually on the left 
from the middle of the box), it was necessary to work with the pixels and compare their intensity val-
ues within the prediction box. As mentioned above, we worked with the red channel of the separated 

bounding boxes of the events. We created a script that counts the sum 
of red pixels vertically over the entire height of the image (column of 
pixels, see Figure 11 for a better idea). The post-processing procedure 
compared the individual columns with each other, and the column 
with the highest value for the red channel identified the center of 
the event. After this step, we got the event position in pixel space. 
However, since the width of the whole spectrogram was 1421 pixels, 
to calculate its value in milliseconds, we still needed to divide the 
pixel value. Equation 1 shows the way to compute the exact value in 
milliseconds, where the value pixel of mid is the center position in 
pixels, 1,000 represents the number of milliseconds in one second, 
and width of spectrogram is the total width of the spectrogram, in our 
case 1421 pixels.

milisecond = pixel of mid ∗ 1000
width of spectrogram (1)

Figure 6. The plots display information on the learning process of our YOLOv5s model. The first three of them depict box, object, and class loss in individual 
epochs during training. The last two plots provide the evolution of precision and recall metrics. In all cases, the x-axis represents the number of epochs.

Figure 7. Intersection over Union.
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We also needed to use a similar approach to provide information (for col-
umn f_min<2kHz) on whether the event has or does not have emission 
under 2 kHz. In this case, we did not work with the columns but with 
parts of the bounding box. The main idea is to compare emissions below 
2  kHz with the emission of the entire image. In terms of dimensions, 
2 kHz represents 20 bottom pixels of the bounding box. For each local-
ized event, we summed the emission in the red channel on the bottom 
20 pixels and compared it with the sum of all pixels of the bounding box. 
We have compared these two values. We empirically found the optimal 

threshold for the comparison of emission of the subpart and the whole image. If the red channel emissions 
of the lower 20 pixels accounted for less than 9.5% of the red channels in the entire image, it was clear in 
most cases that this was not an event that reached below 2 kHz and the output value of f_min<2kHz for 
this event in output table was 0. Otherwise, the output value was 1 representing that event has emission 
under 2 kHz. Figure 12 depicts a boundary of 2 kHz (as a black horizontal line) in one event example of the 
spectrogram.

The main output of the whole automatic detection process is in the form of a data table of detected events, 
which consists of the following columns extracted from predictions and post-processing steps:

1.  image—represents the id number of the annotated spectrogram.
2.  event—provides the sequence number of the localized event on the spectrogram.
3.  date—is the extracted date and time of the measurement in the format YYYYMMDD_HHMMSS.
4.  second—is the second of the 144-s measurement representing the interval of the spectrogram.
5.  milisecond—represents the millisecond in which the event occurred, extracted by the method of auto-

matic post-processing computation of the center of the event.
6.  tweek—binary value, which represents whether the event is tweek (contains modes, value 1) or sferic 

(do not contain modes, value 0).
7.  f_min<2kHz—binary value, which provides information whether the event has emissions under 2 kHz 

in the spectrogram (based on the application of the post-processing method). If a given event reaches an 
area below 2 kHz, the value is 1; otherwise, the value is 0.

Figure 13 displays an example of an output table, which contains automatically detected events and is ready 
for subsequent analysis according to the needs of scientists in the area of atmospheric physics. The present-
ed methods and the whole process were developed in the Python programming language (Van Rossum & 
Drake, 1995) using the Tensorflow (Abadi et al., 2016), and Keras (Chollet et al., 2015; Gulli & Pal, 2017) 
libraries. The source code, together with a detailed description, is available in the Jupyter notebook that 
forms the online material (Maslej-Krešňáková et al., 2021) for this article.

4. Method Evaluation and Discussion
In this section, we provide the evaluation of the detection process and its steps. It is important to note that 
there is always some annotation bias, that is, the annotators did not plot all bounding boxes perfectly. One of 
the advantages of neural network detection models is their ability to learn correct prediction functions from 
the annotation sets if most annotations are accurate. Therefore, the final model was able to suppress anno-
tation errors, and the prediction boxes perfectly bounded the events. Hence, it is also important to perform 
a visual control of the boxes. The use of only quantitative comparison of predicted boxes and annotations 
might be insufficient.

Parameter Value

Image size 1184 × 160

NMS IoU threshold 0.45

Confidence threshold 0.30

Table 3 
Setup of Input Parameters for the Detection Process

Figure 8. Example of detected bounding boxes with object confidence threshold 0.1. The model with this setting captures events with high sensitivity.
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Since we chose the optimal value of the object confidence threshold as less than 0.50, there is a possibility 
that the model labels a given event as a sferic and a tweek simultaneously. Based on a visual inspection, we 
decided to create a script to evaluate the data to mark all duplicate predictions as a tweek. In most testing 
cases (113 out of 136), these events also had a higher value of the probability of predicting a tweek class 
than a sferic.

For the clarity of the analysis, the quantitative evaluation below does not include duplicate labels. We used 
a confusion matrix (Table 4) and metrics like precision, recall, and F1 score to evaluate the model using the 
test set. The main idea for comparison is to compare the same events from the annotation and detection 
output table. For this purpose, we obtained the identical event records by comparing the values of date and 
millisecond attributes from the output table and the annotation table.

The obtained confusion matrix is used to evaluate our detection model. Every element counts the number 
of cases that occurred. In general, we can say that each row of the confusion matrix represents the instances 
in a predicted class while each column represents the instances in an actual class. For example, as we can 
see in Table 4, the element TP represents all cases where our algorithm predicted the event as sferic (for 
Predicted = sferic in a row) and annotators labeled it also as sferic (for Actual = sferic in a column). The 
terms positive and negative in our case are used due to the standard terminology of the confusion matrix; 
let say positive detection is a prediction of sferic and negative detection is a prediction of tweek (i.e., not 
sferic). There are only two rows and two columns in a simple classification task (submatrix 2x2), but we 
need extra input on both axes for background values for the detection task. Therefore, we have Background 
False Negative values representing annotated events not found by the model (not matched to any event in 
the output table). Then we also have Background False Positive values representing the set of events found 
by the model but missing from the model annotations. So, the final confusion matrix contains the following 
elements:

•  True Positive (TP)—the number of correctly detected sferics (all events both annotated and detected as 
sferic),

•  True Negative (TN)—the number of correctly detected tweeks (all events both annotated and detected 
as tweek),

•  False Positive (FP)—the number of events annotated as tweek but detected by the model as sferic,
•  False Negative (FN)—the number of events annotated sferic but detected by the model as tweek,
•  Background False Positive (BFP1, BFP2)—the number of events for the given class (1—sferic, 2—tweek) 

detected by the model, but not matched to any annotation,
•  Background False Negative (BFN1, BFN2)—the number of events for the given class (1—sferic, 2—

tweek) available in annotation table, but not detected by the model.

Figure 9. Example of detected events with object confidence threshold setting 0.45. In this case, the model did not capture multiple tweeks, so we did not test 
the higher threshold and looked for an optimal value between 0.25 and 0.45.

Figure 10. Example of detected bounding boxes with object confidence threshold setting 0.3. After several experiments, their quantitative evaluation, and 
visual inspection, we determined this value as optimal for the final setup of the YOLOv5 model applied to our data set.
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Table 5 provides precise numbers from the evaluation on testing set of 
219 images. We used confusion matrix results to evaluate detection using 
metrics called precision, recall, and F1 score, for every class.

For the sferic class, precision and recall is calculated (based on the nota-
tion from Table 4) as follows:

Precision(class = sferic) = TP
TP + FP + BFP1

, (2)

Recall(class = sferic) = TP
TP + FN + BFN1

. (3)

For the tweek class, precision and recall are calculated as follows:

Precision(class = tweek) = TN
TN + FN + BFP2

, (4)

Recall(class = tweek) = TN
TN + FP + BFN2

. (5)

The F1 score is the harmonic mean of precision and recall. Therefore, we 
can compute it from the particular precision and recall values for every 
class using the formula:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

. (6)

Table 6 shows the evaluation of the model (with object confidence thresholds of 0.3) using precision, recall, 
and F1 score metrics. The column Images indicates the number of images on which we performed the 
prediction for both classes. The column Events shows the actual number of events from annotations. The 
Total row represents the summary for both classes—the number of all events and the weighted average 
of precision, recall, and F1 score from the values for particular classes, representing the overall prediction 
efficiency of our method compared to annotations.

The evaluation results show detection with an F1 score of ∼70%, which is a good result for detection task 
based on manual annotations. The lower score is attributable to two circumstances. First, we had manual 
annotations, which always suffer from some annotation bias. As we wrote before, if most annotations are 
relatively precise, the model learns predictions better and suppresses the errors in annotation sets in detec-
tion. Of course, if we then compare original annotations with detections, the bias results in a lower evalu-

ation score. Therefore, it is also essential to manually check some of the 
detections to see whether the predictions fulfill the expected needs. In 
particular, it was checked which events are detected in the spectrogram 
(according to predefined expectations), also if events have correct types 
(sferic or tweek), and whether extraction of additional features about 
events is correct (exact time of event, emissions under 2 kHz). The de-
tailed manual check of more than 50 spectrograms proved that the cur-
rent model provides output data in expected quality for further analysis 
and can be applied automatically on a larger data set of spectrograms.

During the evaluation, we also found another effect responsible for 
the lower metric values. Since the matching of bounding boxes from 
annotations and detections is based on the center of boxes (millisec-
ond) obtained by the pixel values comparison described above, some 
centers may have been displaced by one pixel. Therefore, no match 
was found. In this case, the Background False Negative and Back-
ground False Positive values would increase directly. There is a pos-
sibility that different normalizations of the spectrogram can reduce 

Figure 11. An example of the event with the column of pixels 
representing the highest red value (black line)—extracted time of the 
event.

Figure 12. Example of an event that does not reach below 2 kHz. The 
black horizontal line represents the border for the algorithm to evaluate if 
events have an emission under 2 kHz.
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noise and provide a more precise computation of the time of the event. Also, we can use more relaxed 
matching for events between annotation and detections (1–2 pixels). However, the results of the YOLO 
model will not change, and from the current evaluation (both quantitative and qualitative—manual 
visual control), we assume that predicted bounding boxes are of high quality. Therefore, our approach 
provides a valuable tool for automated detection of lightning events in spectrograms from the ELMA-
VAN-G analyzer.

We also evaluated the correctness of the automatic method for the identification of events with emissions 
below 2 kHz (column f_min<2kHz in the output table). For the evaluation, we manually annotated 1,967 
events (bounding boxes) for the testing set. In this case, we have a simple binary classification task, with 
two classes—over 2 kHz and below 2 kHz. Table 7 presents the confusion matrix, with the values of TP, TN, 
FP, FN. The meaning of the values is similar to the previous case, just simplified for binary classification. 
Therefore, the calculations of precision and recall for particular classes are as follows (based on the notation 
available in 7):

Precision(class = over 2 kHz) = TP
TP + FP

, (7)

Recall(class = over 2 kHz) = TP
TP + FN

. (8)

Precision(class = below 2 kHz) = TN
TN + FN

, (9)

Recall(class = below 2 kHz) = TN
TN + FP

. (10)

Table 8 displays the results of this evaluation. Similar to the previous evaluation, the F1 score is computed 
as the harmonic mean of particular precision and recall for every class. Also, the total value is a summary 
for both classes computed as a weighted average, and the Events column contains the number of events in 
a class (or total). We can see that 79 events were misclassified as events that didn't reach below 2 kHz, that 
is, false positive and 42 false negative events. According to the results, this postprocessing step showed very 
good performance with an overall 94% F1 score for the prediction.

5. Conclusions
We have developed a reliable automatic method for the extraction of the required details from frequency-time 
spectrograms. The presented method is based on a deep learning and deterministic approach. Thanks to 
the YOLOv5 algorithm, we can detect sferics and tweeks from spectrograms and, in post-processing,  

Figure 13. The figure provides an example of the output table, which results from applying our automatic detection method to spectrograms for the lightning 
events detection. The data prepared in this way can now be used for further analysis and statistical processing.
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determine the millisecond in which the event occurred and provides 
information on whether the event has emissions under 2 kHz. For the 
training and testing process, we annotated more than 2,000 spectro-
grams with the help of students using an online annotation platform. 
The annotation set finally provided 3,200 tweeks and 19,000 sferics, 
which helped train the YOLO model. The presented method can now 
extract details about detected lightning events and store them in the 
form of a table for further statistical scientific analysis. The proposed 
method is very fast and also suitable for real-time deployment. The 
current model was trained to provide results for data recorded by the 
ELMAVAN-G instrument, but thanks to the transfer learning ability of 
deep learning approach, the same architecture can be re-trained for the 
application to a new data set. Therefore, the whole process of spectro-
gram data processing, from identification of sources, annotations, the 
learning phase, and the use of the trained model, can also be seen as 
a methodology or a use-case scenario for similar applications in the 
future.

After normalizing the data, we expect that the noise will be reduced, and 
the method will be able to extract details from spectrograms with even 
higher accuracy. The trained model can also be used to detect low or, 
on the contrary, only extreme events. The sensitivity of the detector can 
be regulated based on the setting of the detection threshold. It is also 
possible to detect only one selected class. The time of occurrence and 
the frequency extent of individual sferics, a presence/absence of the 
signs of dispersion, as well as the presence of higher tweek harmonics 
represent valuable information which can be used for routine character-
ization of the ionospheric D-layer. The characteristics of different wave-
guide modes, as well as the influence of solar events on the occurrence 
of sferics and their propagation in the Earth-ionosphere waveguide can 
be derived from the information obtained using the presented machine 
learning technique. This will also lead to a better understanding of the ef-
fects of the terrestrial magnetic field, and meteorological or seismogenic 
events on the propagation of sferics and on the properties of the D-layer. 
Therefore it might significantly contribute also to the study of thermo-
sphere-ionosphere variations presented by Mackovjak et al. (2021). Even 
more, such extensive analysis of several years of VLF data has not been 
performed yet, and could bring interesting information about diurnal and 
seasonal variability of signal propagation effects, as well as their depend-
ence on different phases of the solar cycle. Results can also serve as an 
input for the models of the density profile of the ionospheric D-layer or 
for VLF propagation codes.

Data Availability Statement
The data were provided by I. Kolmašová and O. Santolík and are publicly 
available through the database of the Institute of Atmospheric Physics 
of the Czech Academy of Sciences (http://bleska.ufa.cas.cz/lsbb/storage/
elm/). The presented results can be reproduced by the Jupyter notebook 
publicly available at https://doi.org/10.5281/zenodo.5494705.

Actual

Predicted Sferic Tweek Background

Sferic TP FP BFP1

Tweek FN TN BFP2

Background BFN1 BFN2

Table 4 
Confusion Matrix—Selected Notation of Elements Representing Different 
Cases for the Detection Task

Actual

Predicted Sferic Tweek Background

Sferic 1,278 71 379

Tweek 62 138 39

Background 550 36

Table 5 
The Table Presents a Confusion Matrix Used to Evaluate Our Event 
Detection Method on the Annotated Test Set

Class Images Events Precision Recall F1 score

Sferic 219 1,890 0.74 0.68 0.71

Tweek 219 245 0.58 0.56 0.57

Total 219 2,135 0.72 0.66 0.69

Note. The values for Total represent the weighted average of the metrics.

Table 6 
The Table Displays the Evaluation of the Detection Model (With the Object 
Confidence Threshold of 0.3) Using Metrics Like Precision, Recall, and F1 
Score

Actual

Predicted Over 2 kHz Below 2 kHz

Over 2 kHz TP = 1,011 FP = 79

Below 2 kHz FN = 42 TN = 835

Table 7 
The Table Presents a Confusion Matrix Representing the Evaluation of the 
Automatic Method for Identifying Events With an Emission Below or Over 
2 kHz

Class Events Precision Recall F1 score

Over 2 kHz 1,053 0.93 0.96 0.94

Below 2 kHz 914 0.95 0.91 0.93

Total 1,967 0.94 0.94 0.94

Note. The values for the class Total represent the weighted average of the 
precision, recall, and F1 score per class. The Events column contains the 
number of events per class or total.

Table 8 
The Table Provides Evaluation Metrics for the Automatic Method for the 
Identification of Emission Below or Over 2 kHz

http://bleska.ufa.cas.cz/lsbb/storage/elm/
http://bleska.ufa.cas.cz/lsbb/storage/elm/
https://doi.org/10.5281/zenodo.5494705
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